| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid |  |-  ( Base ` S ) = ( Base ` S ) | 
						
							| 2 |  | eqid |  |-  ( Base ` T ) = ( Base ` T ) | 
						
							| 3 | 1 2 | mhmf |  |-  ( F e. ( S MndHom T ) -> F : ( Base ` S ) --> ( Base ` T ) ) | 
						
							| 4 | 3 | adantr |  |-  ( ( F e. ( S MndHom T ) /\ G e. ( S MndHom T ) ) -> F : ( Base ` S ) --> ( Base ` T ) ) | 
						
							| 5 | 4 | ffnd |  |-  ( ( F e. ( S MndHom T ) /\ G e. ( S MndHom T ) ) -> F Fn ( Base ` S ) ) | 
						
							| 6 | 1 2 | mhmf |  |-  ( G e. ( S MndHom T ) -> G : ( Base ` S ) --> ( Base ` T ) ) | 
						
							| 7 | 6 | adantl |  |-  ( ( F e. ( S MndHom T ) /\ G e. ( S MndHom T ) ) -> G : ( Base ` S ) --> ( Base ` T ) ) | 
						
							| 8 | 7 | ffnd |  |-  ( ( F e. ( S MndHom T ) /\ G e. ( S MndHom T ) ) -> G Fn ( Base ` S ) ) | 
						
							| 9 |  | fndmin |  |-  ( ( F Fn ( Base ` S ) /\ G Fn ( Base ` S ) ) -> dom ( F i^i G ) = { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ) | 
						
							| 10 | 5 8 9 | syl2anc |  |-  ( ( F e. ( S MndHom T ) /\ G e. ( S MndHom T ) ) -> dom ( F i^i G ) = { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ) | 
						
							| 11 |  | ssrab2 |  |-  { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } C_ ( Base ` S ) | 
						
							| 12 | 11 | a1i |  |-  ( ( F e. ( S MndHom T ) /\ G e. ( S MndHom T ) ) -> { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } C_ ( Base ` S ) ) | 
						
							| 13 |  | fveq2 |  |-  ( z = ( 0g ` S ) -> ( F ` z ) = ( F ` ( 0g ` S ) ) ) | 
						
							| 14 |  | fveq2 |  |-  ( z = ( 0g ` S ) -> ( G ` z ) = ( G ` ( 0g ` S ) ) ) | 
						
							| 15 | 13 14 | eqeq12d |  |-  ( z = ( 0g ` S ) -> ( ( F ` z ) = ( G ` z ) <-> ( F ` ( 0g ` S ) ) = ( G ` ( 0g ` S ) ) ) ) | 
						
							| 16 |  | mhmrcl1 |  |-  ( F e. ( S MndHom T ) -> S e. Mnd ) | 
						
							| 17 | 16 | adantr |  |-  ( ( F e. ( S MndHom T ) /\ G e. ( S MndHom T ) ) -> S e. Mnd ) | 
						
							| 18 |  | eqid |  |-  ( 0g ` S ) = ( 0g ` S ) | 
						
							| 19 | 1 18 | mndidcl |  |-  ( S e. Mnd -> ( 0g ` S ) e. ( Base ` S ) ) | 
						
							| 20 | 17 19 | syl |  |-  ( ( F e. ( S MndHom T ) /\ G e. ( S MndHom T ) ) -> ( 0g ` S ) e. ( Base ` S ) ) | 
						
							| 21 |  | eqid |  |-  ( 0g ` T ) = ( 0g ` T ) | 
						
							| 22 | 18 21 | mhm0 |  |-  ( F e. ( S MndHom T ) -> ( F ` ( 0g ` S ) ) = ( 0g ` T ) ) | 
						
							| 23 | 22 | adantr |  |-  ( ( F e. ( S MndHom T ) /\ G e. ( S MndHom T ) ) -> ( F ` ( 0g ` S ) ) = ( 0g ` T ) ) | 
						
							| 24 | 18 21 | mhm0 |  |-  ( G e. ( S MndHom T ) -> ( G ` ( 0g ` S ) ) = ( 0g ` T ) ) | 
						
							| 25 | 24 | adantl |  |-  ( ( F e. ( S MndHom T ) /\ G e. ( S MndHom T ) ) -> ( G ` ( 0g ` S ) ) = ( 0g ` T ) ) | 
						
							| 26 | 23 25 | eqtr4d |  |-  ( ( F e. ( S MndHom T ) /\ G e. ( S MndHom T ) ) -> ( F ` ( 0g ` S ) ) = ( G ` ( 0g ` S ) ) ) | 
						
							| 27 | 15 20 26 | elrabd |  |-  ( ( F e. ( S MndHom T ) /\ G e. ( S MndHom T ) ) -> ( 0g ` S ) e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ) | 
						
							| 28 |  | fveq2 |  |-  ( z = ( x ( +g ` S ) y ) -> ( F ` z ) = ( F ` ( x ( +g ` S ) y ) ) ) | 
						
							| 29 |  | fveq2 |  |-  ( z = ( x ( +g ` S ) y ) -> ( G ` z ) = ( G ` ( x ( +g ` S ) y ) ) ) | 
						
							| 30 | 28 29 | eqeq12d |  |-  ( z = ( x ( +g ` S ) y ) -> ( ( F ` z ) = ( G ` z ) <-> ( F ` ( x ( +g ` S ) y ) ) = ( G ` ( x ( +g ` S ) y ) ) ) ) | 
						
							| 31 | 17 | ad2antrr |  |-  ( ( ( ( F e. ( S MndHom T ) /\ G e. ( S MndHom T ) ) /\ ( x e. ( Base ` S ) /\ ( F ` x ) = ( G ` x ) ) ) /\ ( y e. ( Base ` S ) /\ ( F ` y ) = ( G ` y ) ) ) -> S e. Mnd ) | 
						
							| 32 |  | simplrl |  |-  ( ( ( ( F e. ( S MndHom T ) /\ G e. ( S MndHom T ) ) /\ ( x e. ( Base ` S ) /\ ( F ` x ) = ( G ` x ) ) ) /\ ( y e. ( Base ` S ) /\ ( F ` y ) = ( G ` y ) ) ) -> x e. ( Base ` S ) ) | 
						
							| 33 |  | simprl |  |-  ( ( ( ( F e. ( S MndHom T ) /\ G e. ( S MndHom T ) ) /\ ( x e. ( Base ` S ) /\ ( F ` x ) = ( G ` x ) ) ) /\ ( y e. ( Base ` S ) /\ ( F ` y ) = ( G ` y ) ) ) -> y e. ( Base ` S ) ) | 
						
							| 34 |  | eqid |  |-  ( +g ` S ) = ( +g ` S ) | 
						
							| 35 | 1 34 | mndcl |  |-  ( ( S e. Mnd /\ x e. ( Base ` S ) /\ y e. ( Base ` S ) ) -> ( x ( +g ` S ) y ) e. ( Base ` S ) ) | 
						
							| 36 | 31 32 33 35 | syl3anc |  |-  ( ( ( ( F e. ( S MndHom T ) /\ G e. ( S MndHom T ) ) /\ ( x e. ( Base ` S ) /\ ( F ` x ) = ( G ` x ) ) ) /\ ( y e. ( Base ` S ) /\ ( F ` y ) = ( G ` y ) ) ) -> ( x ( +g ` S ) y ) e. ( Base ` S ) ) | 
						
							| 37 |  | simplll |  |-  ( ( ( ( F e. ( S MndHom T ) /\ G e. ( S MndHom T ) ) /\ ( x e. ( Base ` S ) /\ ( F ` x ) = ( G ` x ) ) ) /\ ( y e. ( Base ` S ) /\ ( F ` y ) = ( G ` y ) ) ) -> F e. ( S MndHom T ) ) | 
						
							| 38 |  | eqid |  |-  ( +g ` T ) = ( +g ` T ) | 
						
							| 39 | 1 34 38 | mhmlin |  |-  ( ( F e. ( S MndHom T ) /\ x e. ( Base ` S ) /\ y e. ( Base ` S ) ) -> ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` T ) ( F ` y ) ) ) | 
						
							| 40 | 37 32 33 39 | syl3anc |  |-  ( ( ( ( F e. ( S MndHom T ) /\ G e. ( S MndHom T ) ) /\ ( x e. ( Base ` S ) /\ ( F ` x ) = ( G ` x ) ) ) /\ ( y e. ( Base ` S ) /\ ( F ` y ) = ( G ` y ) ) ) -> ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` T ) ( F ` y ) ) ) | 
						
							| 41 |  | simpllr |  |-  ( ( ( ( F e. ( S MndHom T ) /\ G e. ( S MndHom T ) ) /\ ( x e. ( Base ` S ) /\ ( F ` x ) = ( G ` x ) ) ) /\ ( y e. ( Base ` S ) /\ ( F ` y ) = ( G ` y ) ) ) -> G e. ( S MndHom T ) ) | 
						
							| 42 | 1 34 38 | mhmlin |  |-  ( ( G e. ( S MndHom T ) /\ x e. ( Base ` S ) /\ y e. ( Base ` S ) ) -> ( G ` ( x ( +g ` S ) y ) ) = ( ( G ` x ) ( +g ` T ) ( G ` y ) ) ) | 
						
							| 43 | 41 32 33 42 | syl3anc |  |-  ( ( ( ( F e. ( S MndHom T ) /\ G e. ( S MndHom T ) ) /\ ( x e. ( Base ` S ) /\ ( F ` x ) = ( G ` x ) ) ) /\ ( y e. ( Base ` S ) /\ ( F ` y ) = ( G ` y ) ) ) -> ( G ` ( x ( +g ` S ) y ) ) = ( ( G ` x ) ( +g ` T ) ( G ` y ) ) ) | 
						
							| 44 |  | simplrr |  |-  ( ( ( ( F e. ( S MndHom T ) /\ G e. ( S MndHom T ) ) /\ ( x e. ( Base ` S ) /\ ( F ` x ) = ( G ` x ) ) ) /\ ( y e. ( Base ` S ) /\ ( F ` y ) = ( G ` y ) ) ) -> ( F ` x ) = ( G ` x ) ) | 
						
							| 45 |  | simprr |  |-  ( ( ( ( F e. ( S MndHom T ) /\ G e. ( S MndHom T ) ) /\ ( x e. ( Base ` S ) /\ ( F ` x ) = ( G ` x ) ) ) /\ ( y e. ( Base ` S ) /\ ( F ` y ) = ( G ` y ) ) ) -> ( F ` y ) = ( G ` y ) ) | 
						
							| 46 | 44 45 | oveq12d |  |-  ( ( ( ( F e. ( S MndHom T ) /\ G e. ( S MndHom T ) ) /\ ( x e. ( Base ` S ) /\ ( F ` x ) = ( G ` x ) ) ) /\ ( y e. ( Base ` S ) /\ ( F ` y ) = ( G ` y ) ) ) -> ( ( F ` x ) ( +g ` T ) ( F ` y ) ) = ( ( G ` x ) ( +g ` T ) ( G ` y ) ) ) | 
						
							| 47 | 43 46 | eqtr4d |  |-  ( ( ( ( F e. ( S MndHom T ) /\ G e. ( S MndHom T ) ) /\ ( x e. ( Base ` S ) /\ ( F ` x ) = ( G ` x ) ) ) /\ ( y e. ( Base ` S ) /\ ( F ` y ) = ( G ` y ) ) ) -> ( G ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` T ) ( F ` y ) ) ) | 
						
							| 48 | 40 47 | eqtr4d |  |-  ( ( ( ( F e. ( S MndHom T ) /\ G e. ( S MndHom T ) ) /\ ( x e. ( Base ` S ) /\ ( F ` x ) = ( G ` x ) ) ) /\ ( y e. ( Base ` S ) /\ ( F ` y ) = ( G ` y ) ) ) -> ( F ` ( x ( +g ` S ) y ) ) = ( G ` ( x ( +g ` S ) y ) ) ) | 
						
							| 49 | 30 36 48 | elrabd |  |-  ( ( ( ( F e. ( S MndHom T ) /\ G e. ( S MndHom T ) ) /\ ( x e. ( Base ` S ) /\ ( F ` x ) = ( G ` x ) ) ) /\ ( y e. ( Base ` S ) /\ ( F ` y ) = ( G ` y ) ) ) -> ( x ( +g ` S ) y ) e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ) | 
						
							| 50 | 49 | expr |  |-  ( ( ( ( F e. ( S MndHom T ) /\ G e. ( S MndHom T ) ) /\ ( x e. ( Base ` S ) /\ ( F ` x ) = ( G ` x ) ) ) /\ y e. ( Base ` S ) ) -> ( ( F ` y ) = ( G ` y ) -> ( x ( +g ` S ) y ) e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ) ) | 
						
							| 51 | 50 | ralrimiva |  |-  ( ( ( F e. ( S MndHom T ) /\ G e. ( S MndHom T ) ) /\ ( x e. ( Base ` S ) /\ ( F ` x ) = ( G ` x ) ) ) -> A. y e. ( Base ` S ) ( ( F ` y ) = ( G ` y ) -> ( x ( +g ` S ) y ) e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ) ) | 
						
							| 52 |  | fveq2 |  |-  ( z = y -> ( F ` z ) = ( F ` y ) ) | 
						
							| 53 |  | fveq2 |  |-  ( z = y -> ( G ` z ) = ( G ` y ) ) | 
						
							| 54 | 52 53 | eqeq12d |  |-  ( z = y -> ( ( F ` z ) = ( G ` z ) <-> ( F ` y ) = ( G ` y ) ) ) | 
						
							| 55 | 54 | ralrab |  |-  ( A. y e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ( x ( +g ` S ) y ) e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } <-> A. y e. ( Base ` S ) ( ( F ` y ) = ( G ` y ) -> ( x ( +g ` S ) y ) e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ) ) | 
						
							| 56 | 51 55 | sylibr |  |-  ( ( ( F e. ( S MndHom T ) /\ G e. ( S MndHom T ) ) /\ ( x e. ( Base ` S ) /\ ( F ` x ) = ( G ` x ) ) ) -> A. y e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ( x ( +g ` S ) y ) e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ) | 
						
							| 57 | 56 | expr |  |-  ( ( ( F e. ( S MndHom T ) /\ G e. ( S MndHom T ) ) /\ x e. ( Base ` S ) ) -> ( ( F ` x ) = ( G ` x ) -> A. y e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ( x ( +g ` S ) y ) e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ) ) | 
						
							| 58 | 57 | ralrimiva |  |-  ( ( F e. ( S MndHom T ) /\ G e. ( S MndHom T ) ) -> A. x e. ( Base ` S ) ( ( F ` x ) = ( G ` x ) -> A. y e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ( x ( +g ` S ) y ) e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ) ) | 
						
							| 59 |  | fveq2 |  |-  ( z = x -> ( F ` z ) = ( F ` x ) ) | 
						
							| 60 |  | fveq2 |  |-  ( z = x -> ( G ` z ) = ( G ` x ) ) | 
						
							| 61 | 59 60 | eqeq12d |  |-  ( z = x -> ( ( F ` z ) = ( G ` z ) <-> ( F ` x ) = ( G ` x ) ) ) | 
						
							| 62 | 61 | ralrab |  |-  ( A. x e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } A. y e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ( x ( +g ` S ) y ) e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } <-> A. x e. ( Base ` S ) ( ( F ` x ) = ( G ` x ) -> A. y e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ( x ( +g ` S ) y ) e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ) ) | 
						
							| 63 | 58 62 | sylibr |  |-  ( ( F e. ( S MndHom T ) /\ G e. ( S MndHom T ) ) -> A. x e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } A. y e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ( x ( +g ` S ) y ) e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ) | 
						
							| 64 | 1 18 34 | issubm |  |-  ( S e. Mnd -> ( { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } e. ( SubMnd ` S ) <-> ( { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } C_ ( Base ` S ) /\ ( 0g ` S ) e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } /\ A. x e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } A. y e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ( x ( +g ` S ) y ) e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ) ) ) | 
						
							| 65 | 17 64 | syl |  |-  ( ( F e. ( S MndHom T ) /\ G e. ( S MndHom T ) ) -> ( { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } e. ( SubMnd ` S ) <-> ( { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } C_ ( Base ` S ) /\ ( 0g ` S ) e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } /\ A. x e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } A. y e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ( x ( +g ` S ) y ) e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ) ) ) | 
						
							| 66 | 12 27 63 65 | mpbir3and |  |-  ( ( F e. ( S MndHom T ) /\ G e. ( S MndHom T ) ) -> { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } e. ( SubMnd ` S ) ) | 
						
							| 67 | 10 66 | eqeltrd |  |-  ( ( F e. ( S MndHom T ) /\ G e. ( S MndHom T ) ) -> dom ( F i^i G ) e. ( SubMnd ` S ) ) |