Step |
Hyp |
Ref |
Expression |
1 |
|
mhmf.b |
|- B = ( Base ` S ) |
2 |
|
mhmf.c |
|- C = ( Base ` T ) |
3 |
|
eqid |
|- ( +g ` S ) = ( +g ` S ) |
4 |
|
eqid |
|- ( +g ` T ) = ( +g ` T ) |
5 |
|
eqid |
|- ( 0g ` S ) = ( 0g ` S ) |
6 |
|
eqid |
|- ( 0g ` T ) = ( 0g ` T ) |
7 |
1 2 3 4 5 6
|
ismhm |
|- ( F e. ( S MndHom T ) <-> ( ( S e. Mnd /\ T e. Mnd ) /\ ( F : B --> C /\ A. x e. B A. y e. B ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` T ) ( F ` y ) ) /\ ( F ` ( 0g ` S ) ) = ( 0g ` T ) ) ) ) |
8 |
7
|
simprbi |
|- ( F e. ( S MndHom T ) -> ( F : B --> C /\ A. x e. B A. y e. B ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` T ) ( F ` y ) ) /\ ( F ` ( 0g ` S ) ) = ( 0g ` T ) ) ) |
9 |
8
|
simp1d |
|- ( F e. ( S MndHom T ) -> F : B --> C ) |