| Step | Hyp | Ref | Expression | 
						
							| 1 |  | imassrn |  |-  ( F " X ) C_ ran F | 
						
							| 2 |  | eqid |  |-  ( Base ` M ) = ( Base ` M ) | 
						
							| 3 |  | eqid |  |-  ( Base ` N ) = ( Base ` N ) | 
						
							| 4 | 2 3 | mhmf |  |-  ( F e. ( M MndHom N ) -> F : ( Base ` M ) --> ( Base ` N ) ) | 
						
							| 5 | 4 | adantr |  |-  ( ( F e. ( M MndHom N ) /\ X e. ( SubMnd ` M ) ) -> F : ( Base ` M ) --> ( Base ` N ) ) | 
						
							| 6 | 5 | frnd |  |-  ( ( F e. ( M MndHom N ) /\ X e. ( SubMnd ` M ) ) -> ran F C_ ( Base ` N ) ) | 
						
							| 7 | 1 6 | sstrid |  |-  ( ( F e. ( M MndHom N ) /\ X e. ( SubMnd ` M ) ) -> ( F " X ) C_ ( Base ` N ) ) | 
						
							| 8 |  | eqid |  |-  ( 0g ` M ) = ( 0g ` M ) | 
						
							| 9 |  | eqid |  |-  ( 0g ` N ) = ( 0g ` N ) | 
						
							| 10 | 8 9 | mhm0 |  |-  ( F e. ( M MndHom N ) -> ( F ` ( 0g ` M ) ) = ( 0g ` N ) ) | 
						
							| 11 | 10 | adantr |  |-  ( ( F e. ( M MndHom N ) /\ X e. ( SubMnd ` M ) ) -> ( F ` ( 0g ` M ) ) = ( 0g ` N ) ) | 
						
							| 12 | 5 | ffnd |  |-  ( ( F e. ( M MndHom N ) /\ X e. ( SubMnd ` M ) ) -> F Fn ( Base ` M ) ) | 
						
							| 13 | 2 | submss |  |-  ( X e. ( SubMnd ` M ) -> X C_ ( Base ` M ) ) | 
						
							| 14 | 13 | adantl |  |-  ( ( F e. ( M MndHom N ) /\ X e. ( SubMnd ` M ) ) -> X C_ ( Base ` M ) ) | 
						
							| 15 | 8 | subm0cl |  |-  ( X e. ( SubMnd ` M ) -> ( 0g ` M ) e. X ) | 
						
							| 16 | 15 | adantl |  |-  ( ( F e. ( M MndHom N ) /\ X e. ( SubMnd ` M ) ) -> ( 0g ` M ) e. X ) | 
						
							| 17 |  | fnfvima |  |-  ( ( F Fn ( Base ` M ) /\ X C_ ( Base ` M ) /\ ( 0g ` M ) e. X ) -> ( F ` ( 0g ` M ) ) e. ( F " X ) ) | 
						
							| 18 | 12 14 16 17 | syl3anc |  |-  ( ( F e. ( M MndHom N ) /\ X e. ( SubMnd ` M ) ) -> ( F ` ( 0g ` M ) ) e. ( F " X ) ) | 
						
							| 19 | 11 18 | eqeltrrd |  |-  ( ( F e. ( M MndHom N ) /\ X e. ( SubMnd ` M ) ) -> ( 0g ` N ) e. ( F " X ) ) | 
						
							| 20 |  | simpl |  |-  ( ( F e. ( M MndHom N ) /\ X e. ( SubMnd ` M ) ) -> F e. ( M MndHom N ) ) | 
						
							| 21 |  | eqidd |  |-  ( ( F e. ( M MndHom N ) /\ X e. ( SubMnd ` M ) ) -> ( +g ` M ) = ( +g ` M ) ) | 
						
							| 22 |  | eqidd |  |-  ( ( F e. ( M MndHom N ) /\ X e. ( SubMnd ` M ) ) -> ( +g ` N ) = ( +g ` N ) ) | 
						
							| 23 |  | eqid |  |-  ( +g ` M ) = ( +g ` M ) | 
						
							| 24 | 23 | submcl |  |-  ( ( X e. ( SubMnd ` M ) /\ z e. X /\ x e. X ) -> ( z ( +g ` M ) x ) e. X ) | 
						
							| 25 | 24 | 3adant1l |  |-  ( ( ( F e. ( M MndHom N ) /\ X e. ( SubMnd ` M ) ) /\ z e. X /\ x e. X ) -> ( z ( +g ` M ) x ) e. X ) | 
						
							| 26 | 20 14 21 22 25 | mhmimalem |  |-  ( ( F e. ( M MndHom N ) /\ X e. ( SubMnd ` M ) ) -> A. x e. ( F " X ) A. y e. ( F " X ) ( x ( +g ` N ) y ) e. ( F " X ) ) | 
						
							| 27 |  | mhmrcl2 |  |-  ( F e. ( M MndHom N ) -> N e. Mnd ) | 
						
							| 28 | 27 | adantr |  |-  ( ( F e. ( M MndHom N ) /\ X e. ( SubMnd ` M ) ) -> N e. Mnd ) | 
						
							| 29 |  | eqid |  |-  ( +g ` N ) = ( +g ` N ) | 
						
							| 30 | 3 9 29 | issubm |  |-  ( N e. Mnd -> ( ( F " X ) e. ( SubMnd ` N ) <-> ( ( F " X ) C_ ( Base ` N ) /\ ( 0g ` N ) e. ( F " X ) /\ A. x e. ( F " X ) A. y e. ( F " X ) ( x ( +g ` N ) y ) e. ( F " X ) ) ) ) | 
						
							| 31 | 28 30 | syl |  |-  ( ( F e. ( M MndHom N ) /\ X e. ( SubMnd ` M ) ) -> ( ( F " X ) e. ( SubMnd ` N ) <-> ( ( F " X ) C_ ( Base ` N ) /\ ( 0g ` N ) e. ( F " X ) /\ A. x e. ( F " X ) A. y e. ( F " X ) ( x ( +g ` N ) y ) e. ( F " X ) ) ) ) | 
						
							| 32 | 7 19 26 31 | mpbir3and |  |-  ( ( F e. ( M MndHom N ) /\ X e. ( SubMnd ` M ) ) -> ( F " X ) e. ( SubMnd ` N ) ) |