| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mhmimalem.f |  |-  ( ph -> F e. ( M MndHom N ) ) | 
						
							| 2 |  | mhmimalem.s |  |-  ( ph -> X C_ ( Base ` M ) ) | 
						
							| 3 |  | mhmimalem.a |  |-  ( ph -> .(+) = ( +g ` M ) ) | 
						
							| 4 |  | mhmimalem.p |  |-  ( ph -> .+ = ( +g ` N ) ) | 
						
							| 5 |  | mhmimalem.c |  |-  ( ( ph /\ z e. X /\ x e. X ) -> ( z .(+) x ) e. X ) | 
						
							| 6 | 1 | adantr |  |-  ( ( ph /\ ( z e. X /\ x e. X ) ) -> F e. ( M MndHom N ) ) | 
						
							| 7 | 2 | adantr |  |-  ( ( ph /\ ( z e. X /\ x e. X ) ) -> X C_ ( Base ` M ) ) | 
						
							| 8 |  | simprl |  |-  ( ( ph /\ ( z e. X /\ x e. X ) ) -> z e. X ) | 
						
							| 9 | 7 8 | sseldd |  |-  ( ( ph /\ ( z e. X /\ x e. X ) ) -> z e. ( Base ` M ) ) | 
						
							| 10 |  | simprr |  |-  ( ( ph /\ ( z e. X /\ x e. X ) ) -> x e. X ) | 
						
							| 11 | 7 10 | sseldd |  |-  ( ( ph /\ ( z e. X /\ x e. X ) ) -> x e. ( Base ` M ) ) | 
						
							| 12 |  | eqid |  |-  ( Base ` M ) = ( Base ` M ) | 
						
							| 13 |  | eqid |  |-  ( +g ` M ) = ( +g ` M ) | 
						
							| 14 |  | eqid |  |-  ( +g ` N ) = ( +g ` N ) | 
						
							| 15 | 12 13 14 | mhmlin |  |-  ( ( F e. ( M MndHom N ) /\ z e. ( Base ` M ) /\ x e. ( Base ` M ) ) -> ( F ` ( z ( +g ` M ) x ) ) = ( ( F ` z ) ( +g ` N ) ( F ` x ) ) ) | 
						
							| 16 | 6 9 11 15 | syl3anc |  |-  ( ( ph /\ ( z e. X /\ x e. X ) ) -> ( F ` ( z ( +g ` M ) x ) ) = ( ( F ` z ) ( +g ` N ) ( F ` x ) ) ) | 
						
							| 17 | 3 | oveqd |  |-  ( ph -> ( z .(+) x ) = ( z ( +g ` M ) x ) ) | 
						
							| 18 | 17 | fveq2d |  |-  ( ph -> ( F ` ( z .(+) x ) ) = ( F ` ( z ( +g ` M ) x ) ) ) | 
						
							| 19 | 4 | oveqd |  |-  ( ph -> ( ( F ` z ) .+ ( F ` x ) ) = ( ( F ` z ) ( +g ` N ) ( F ` x ) ) ) | 
						
							| 20 | 18 19 | eqeq12d |  |-  ( ph -> ( ( F ` ( z .(+) x ) ) = ( ( F ` z ) .+ ( F ` x ) ) <-> ( F ` ( z ( +g ` M ) x ) ) = ( ( F ` z ) ( +g ` N ) ( F ` x ) ) ) ) | 
						
							| 21 | 20 | adantr |  |-  ( ( ph /\ ( z e. X /\ x e. X ) ) -> ( ( F ` ( z .(+) x ) ) = ( ( F ` z ) .+ ( F ` x ) ) <-> ( F ` ( z ( +g ` M ) x ) ) = ( ( F ` z ) ( +g ` N ) ( F ` x ) ) ) ) | 
						
							| 22 | 16 21 | mpbird |  |-  ( ( ph /\ ( z e. X /\ x e. X ) ) -> ( F ` ( z .(+) x ) ) = ( ( F ` z ) .+ ( F ` x ) ) ) | 
						
							| 23 |  | eqid |  |-  ( Base ` N ) = ( Base ` N ) | 
						
							| 24 | 12 23 | mhmf |  |-  ( F e. ( M MndHom N ) -> F : ( Base ` M ) --> ( Base ` N ) ) | 
						
							| 25 | 1 24 | syl |  |-  ( ph -> F : ( Base ` M ) --> ( Base ` N ) ) | 
						
							| 26 | 25 | ffnd |  |-  ( ph -> F Fn ( Base ` M ) ) | 
						
							| 27 | 26 | adantr |  |-  ( ( ph /\ ( z e. X /\ x e. X ) ) -> F Fn ( Base ` M ) ) | 
						
							| 28 | 5 | 3expb |  |-  ( ( ph /\ ( z e. X /\ x e. X ) ) -> ( z .(+) x ) e. X ) | 
						
							| 29 |  | fnfvima |  |-  ( ( F Fn ( Base ` M ) /\ X C_ ( Base ` M ) /\ ( z .(+) x ) e. X ) -> ( F ` ( z .(+) x ) ) e. ( F " X ) ) | 
						
							| 30 | 27 7 28 29 | syl3anc |  |-  ( ( ph /\ ( z e. X /\ x e. X ) ) -> ( F ` ( z .(+) x ) ) e. ( F " X ) ) | 
						
							| 31 | 22 30 | eqeltrrd |  |-  ( ( ph /\ ( z e. X /\ x e. X ) ) -> ( ( F ` z ) .+ ( F ` x ) ) e. ( F " X ) ) | 
						
							| 32 | 31 | anassrs |  |-  ( ( ( ph /\ z e. X ) /\ x e. X ) -> ( ( F ` z ) .+ ( F ` x ) ) e. ( F " X ) ) | 
						
							| 33 | 32 | ralrimiva |  |-  ( ( ph /\ z e. X ) -> A. x e. X ( ( F ` z ) .+ ( F ` x ) ) e. ( F " X ) ) | 
						
							| 34 |  | oveq2 |  |-  ( y = ( F ` x ) -> ( ( F ` z ) .+ y ) = ( ( F ` z ) .+ ( F ` x ) ) ) | 
						
							| 35 | 34 | eleq1d |  |-  ( y = ( F ` x ) -> ( ( ( F ` z ) .+ y ) e. ( F " X ) <-> ( ( F ` z ) .+ ( F ` x ) ) e. ( F " X ) ) ) | 
						
							| 36 | 35 | ralima |  |-  ( ( F Fn ( Base ` M ) /\ X C_ ( Base ` M ) ) -> ( A. y e. ( F " X ) ( ( F ` z ) .+ y ) e. ( F " X ) <-> A. x e. X ( ( F ` z ) .+ ( F ` x ) ) e. ( F " X ) ) ) | 
						
							| 37 | 26 2 36 | syl2anc |  |-  ( ph -> ( A. y e. ( F " X ) ( ( F ` z ) .+ y ) e. ( F " X ) <-> A. x e. X ( ( F ` z ) .+ ( F ` x ) ) e. ( F " X ) ) ) | 
						
							| 38 | 37 | adantr |  |-  ( ( ph /\ z e. X ) -> ( A. y e. ( F " X ) ( ( F ` z ) .+ y ) e. ( F " X ) <-> A. x e. X ( ( F ` z ) .+ ( F ` x ) ) e. ( F " X ) ) ) | 
						
							| 39 | 33 38 | mpbird |  |-  ( ( ph /\ z e. X ) -> A. y e. ( F " X ) ( ( F ` z ) .+ y ) e. ( F " X ) ) | 
						
							| 40 | 39 | ralrimiva |  |-  ( ph -> A. z e. X A. y e. ( F " X ) ( ( F ` z ) .+ y ) e. ( F " X ) ) | 
						
							| 41 |  | oveq1 |  |-  ( x = ( F ` z ) -> ( x .+ y ) = ( ( F ` z ) .+ y ) ) | 
						
							| 42 | 41 | eleq1d |  |-  ( x = ( F ` z ) -> ( ( x .+ y ) e. ( F " X ) <-> ( ( F ` z ) .+ y ) e. ( F " X ) ) ) | 
						
							| 43 | 42 | ralbidv |  |-  ( x = ( F ` z ) -> ( A. y e. ( F " X ) ( x .+ y ) e. ( F " X ) <-> A. y e. ( F " X ) ( ( F ` z ) .+ y ) e. ( F " X ) ) ) | 
						
							| 44 | 43 | ralima |  |-  ( ( F Fn ( Base ` M ) /\ X C_ ( Base ` M ) ) -> ( A. x e. ( F " X ) A. y e. ( F " X ) ( x .+ y ) e. ( F " X ) <-> A. z e. X A. y e. ( F " X ) ( ( F ` z ) .+ y ) e. ( F " X ) ) ) | 
						
							| 45 | 26 2 44 | syl2anc |  |-  ( ph -> ( A. x e. ( F " X ) A. y e. ( F " X ) ( x .+ y ) e. ( F " X ) <-> A. z e. X A. y e. ( F " X ) ( ( F ` z ) .+ y ) e. ( F " X ) ) ) | 
						
							| 46 | 40 45 | mpbird |  |-  ( ph -> A. x e. ( F " X ) A. y e. ( F " X ) ( x .+ y ) e. ( F " X ) ) |