| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ghmgrp.f |  |-  ( ( ph /\ x e. X /\ y e. X ) -> ( F ` ( x .+ y ) ) = ( ( F ` x ) .+^ ( F ` y ) ) ) | 
						
							| 2 |  | mhmlem.a |  |-  ( ph -> A e. X ) | 
						
							| 3 |  | mhmlem.b |  |-  ( ph -> B e. X ) | 
						
							| 4 |  | id |  |-  ( ph -> ph ) | 
						
							| 5 |  | eleq1 |  |-  ( x = A -> ( x e. X <-> A e. X ) ) | 
						
							| 6 | 5 | 3anbi2d |  |-  ( x = A -> ( ( ph /\ x e. X /\ y e. X ) <-> ( ph /\ A e. X /\ y e. X ) ) ) | 
						
							| 7 |  | fvoveq1 |  |-  ( x = A -> ( F ` ( x .+ y ) ) = ( F ` ( A .+ y ) ) ) | 
						
							| 8 |  | fveq2 |  |-  ( x = A -> ( F ` x ) = ( F ` A ) ) | 
						
							| 9 | 8 | oveq1d |  |-  ( x = A -> ( ( F ` x ) .+^ ( F ` y ) ) = ( ( F ` A ) .+^ ( F ` y ) ) ) | 
						
							| 10 | 7 9 | eqeq12d |  |-  ( x = A -> ( ( F ` ( x .+ y ) ) = ( ( F ` x ) .+^ ( F ` y ) ) <-> ( F ` ( A .+ y ) ) = ( ( F ` A ) .+^ ( F ` y ) ) ) ) | 
						
							| 11 | 6 10 | imbi12d |  |-  ( x = A -> ( ( ( ph /\ x e. X /\ y e. X ) -> ( F ` ( x .+ y ) ) = ( ( F ` x ) .+^ ( F ` y ) ) ) <-> ( ( ph /\ A e. X /\ y e. X ) -> ( F ` ( A .+ y ) ) = ( ( F ` A ) .+^ ( F ` y ) ) ) ) ) | 
						
							| 12 |  | eleq1 |  |-  ( y = B -> ( y e. X <-> B e. X ) ) | 
						
							| 13 | 12 | 3anbi3d |  |-  ( y = B -> ( ( ph /\ A e. X /\ y e. X ) <-> ( ph /\ A e. X /\ B e. X ) ) ) | 
						
							| 14 |  | oveq2 |  |-  ( y = B -> ( A .+ y ) = ( A .+ B ) ) | 
						
							| 15 | 14 | fveq2d |  |-  ( y = B -> ( F ` ( A .+ y ) ) = ( F ` ( A .+ B ) ) ) | 
						
							| 16 |  | fveq2 |  |-  ( y = B -> ( F ` y ) = ( F ` B ) ) | 
						
							| 17 | 16 | oveq2d |  |-  ( y = B -> ( ( F ` A ) .+^ ( F ` y ) ) = ( ( F ` A ) .+^ ( F ` B ) ) ) | 
						
							| 18 | 15 17 | eqeq12d |  |-  ( y = B -> ( ( F ` ( A .+ y ) ) = ( ( F ` A ) .+^ ( F ` y ) ) <-> ( F ` ( A .+ B ) ) = ( ( F ` A ) .+^ ( F ` B ) ) ) ) | 
						
							| 19 | 13 18 | imbi12d |  |-  ( y = B -> ( ( ( ph /\ A e. X /\ y e. X ) -> ( F ` ( A .+ y ) ) = ( ( F ` A ) .+^ ( F ` y ) ) ) <-> ( ( ph /\ A e. X /\ B e. X ) -> ( F ` ( A .+ B ) ) = ( ( F ` A ) .+^ ( F ` B ) ) ) ) ) | 
						
							| 20 | 11 19 1 | vtocl2g |  |-  ( ( A e. X /\ B e. X ) -> ( ( ph /\ A e. X /\ B e. X ) -> ( F ` ( A .+ B ) ) = ( ( F ` A ) .+^ ( F ` B ) ) ) ) | 
						
							| 21 | 2 3 20 | syl2anc |  |-  ( ph -> ( ( ph /\ A e. X /\ B e. X ) -> ( F ` ( A .+ B ) ) = ( ( F ` A ) .+^ ( F ` B ) ) ) ) | 
						
							| 22 | 4 2 3 21 | mp3and |  |-  ( ph -> ( F ` ( A .+ B ) ) = ( ( F ` A ) .+^ ( F ` B ) ) ) |