| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mhmmulg.b |  |-  B = ( Base ` G ) | 
						
							| 2 |  | mhmmulg.s |  |-  .x. = ( .g ` G ) | 
						
							| 3 |  | mhmmulg.t |  |-  .X. = ( .g ` H ) | 
						
							| 4 |  | fvoveq1 |  |-  ( n = 0 -> ( F ` ( n .x. X ) ) = ( F ` ( 0 .x. X ) ) ) | 
						
							| 5 |  | oveq1 |  |-  ( n = 0 -> ( n .X. ( F ` X ) ) = ( 0 .X. ( F ` X ) ) ) | 
						
							| 6 | 4 5 | eqeq12d |  |-  ( n = 0 -> ( ( F ` ( n .x. X ) ) = ( n .X. ( F ` X ) ) <-> ( F ` ( 0 .x. X ) ) = ( 0 .X. ( F ` X ) ) ) ) | 
						
							| 7 | 6 | imbi2d |  |-  ( n = 0 -> ( ( ( F e. ( G MndHom H ) /\ X e. B ) -> ( F ` ( n .x. X ) ) = ( n .X. ( F ` X ) ) ) <-> ( ( F e. ( G MndHom H ) /\ X e. B ) -> ( F ` ( 0 .x. X ) ) = ( 0 .X. ( F ` X ) ) ) ) ) | 
						
							| 8 |  | fvoveq1 |  |-  ( n = m -> ( F ` ( n .x. X ) ) = ( F ` ( m .x. X ) ) ) | 
						
							| 9 |  | oveq1 |  |-  ( n = m -> ( n .X. ( F ` X ) ) = ( m .X. ( F ` X ) ) ) | 
						
							| 10 | 8 9 | eqeq12d |  |-  ( n = m -> ( ( F ` ( n .x. X ) ) = ( n .X. ( F ` X ) ) <-> ( F ` ( m .x. X ) ) = ( m .X. ( F ` X ) ) ) ) | 
						
							| 11 | 10 | imbi2d |  |-  ( n = m -> ( ( ( F e. ( G MndHom H ) /\ X e. B ) -> ( F ` ( n .x. X ) ) = ( n .X. ( F ` X ) ) ) <-> ( ( F e. ( G MndHom H ) /\ X e. B ) -> ( F ` ( m .x. X ) ) = ( m .X. ( F ` X ) ) ) ) ) | 
						
							| 12 |  | fvoveq1 |  |-  ( n = ( m + 1 ) -> ( F ` ( n .x. X ) ) = ( F ` ( ( m + 1 ) .x. X ) ) ) | 
						
							| 13 |  | oveq1 |  |-  ( n = ( m + 1 ) -> ( n .X. ( F ` X ) ) = ( ( m + 1 ) .X. ( F ` X ) ) ) | 
						
							| 14 | 12 13 | eqeq12d |  |-  ( n = ( m + 1 ) -> ( ( F ` ( n .x. X ) ) = ( n .X. ( F ` X ) ) <-> ( F ` ( ( m + 1 ) .x. X ) ) = ( ( m + 1 ) .X. ( F ` X ) ) ) ) | 
						
							| 15 | 14 | imbi2d |  |-  ( n = ( m + 1 ) -> ( ( ( F e. ( G MndHom H ) /\ X e. B ) -> ( F ` ( n .x. X ) ) = ( n .X. ( F ` X ) ) ) <-> ( ( F e. ( G MndHom H ) /\ X e. B ) -> ( F ` ( ( m + 1 ) .x. X ) ) = ( ( m + 1 ) .X. ( F ` X ) ) ) ) ) | 
						
							| 16 |  | fvoveq1 |  |-  ( n = N -> ( F ` ( n .x. X ) ) = ( F ` ( N .x. X ) ) ) | 
						
							| 17 |  | oveq1 |  |-  ( n = N -> ( n .X. ( F ` X ) ) = ( N .X. ( F ` X ) ) ) | 
						
							| 18 | 16 17 | eqeq12d |  |-  ( n = N -> ( ( F ` ( n .x. X ) ) = ( n .X. ( F ` X ) ) <-> ( F ` ( N .x. X ) ) = ( N .X. ( F ` X ) ) ) ) | 
						
							| 19 | 18 | imbi2d |  |-  ( n = N -> ( ( ( F e. ( G MndHom H ) /\ X e. B ) -> ( F ` ( n .x. X ) ) = ( n .X. ( F ` X ) ) ) <-> ( ( F e. ( G MndHom H ) /\ X e. B ) -> ( F ` ( N .x. X ) ) = ( N .X. ( F ` X ) ) ) ) ) | 
						
							| 20 |  | eqid |  |-  ( 0g ` G ) = ( 0g ` G ) | 
						
							| 21 |  | eqid |  |-  ( 0g ` H ) = ( 0g ` H ) | 
						
							| 22 | 20 21 | mhm0 |  |-  ( F e. ( G MndHom H ) -> ( F ` ( 0g ` G ) ) = ( 0g ` H ) ) | 
						
							| 23 | 22 | adantr |  |-  ( ( F e. ( G MndHom H ) /\ X e. B ) -> ( F ` ( 0g ` G ) ) = ( 0g ` H ) ) | 
						
							| 24 | 1 20 2 | mulg0 |  |-  ( X e. B -> ( 0 .x. X ) = ( 0g ` G ) ) | 
						
							| 25 | 24 | adantl |  |-  ( ( F e. ( G MndHom H ) /\ X e. B ) -> ( 0 .x. X ) = ( 0g ` G ) ) | 
						
							| 26 | 25 | fveq2d |  |-  ( ( F e. ( G MndHom H ) /\ X e. B ) -> ( F ` ( 0 .x. X ) ) = ( F ` ( 0g ` G ) ) ) | 
						
							| 27 |  | eqid |  |-  ( Base ` H ) = ( Base ` H ) | 
						
							| 28 | 1 27 | mhmf |  |-  ( F e. ( G MndHom H ) -> F : B --> ( Base ` H ) ) | 
						
							| 29 | 28 | ffvelcdmda |  |-  ( ( F e. ( G MndHom H ) /\ X e. B ) -> ( F ` X ) e. ( Base ` H ) ) | 
						
							| 30 | 27 21 3 | mulg0 |  |-  ( ( F ` X ) e. ( Base ` H ) -> ( 0 .X. ( F ` X ) ) = ( 0g ` H ) ) | 
						
							| 31 | 29 30 | syl |  |-  ( ( F e. ( G MndHom H ) /\ X e. B ) -> ( 0 .X. ( F ` X ) ) = ( 0g ` H ) ) | 
						
							| 32 | 23 26 31 | 3eqtr4d |  |-  ( ( F e. ( G MndHom H ) /\ X e. B ) -> ( F ` ( 0 .x. X ) ) = ( 0 .X. ( F ` X ) ) ) | 
						
							| 33 |  | oveq1 |  |-  ( ( F ` ( m .x. X ) ) = ( m .X. ( F ` X ) ) -> ( ( F ` ( m .x. X ) ) ( +g ` H ) ( F ` X ) ) = ( ( m .X. ( F ` X ) ) ( +g ` H ) ( F ` X ) ) ) | 
						
							| 34 |  | mhmrcl1 |  |-  ( F e. ( G MndHom H ) -> G e. Mnd ) | 
						
							| 35 | 34 | ad2antrr |  |-  ( ( ( F e. ( G MndHom H ) /\ X e. B ) /\ m e. NN0 ) -> G e. Mnd ) | 
						
							| 36 |  | simpr |  |-  ( ( ( F e. ( G MndHom H ) /\ X e. B ) /\ m e. NN0 ) -> m e. NN0 ) | 
						
							| 37 |  | simplr |  |-  ( ( ( F e. ( G MndHom H ) /\ X e. B ) /\ m e. NN0 ) -> X e. B ) | 
						
							| 38 |  | eqid |  |-  ( +g ` G ) = ( +g ` G ) | 
						
							| 39 | 1 2 38 | mulgnn0p1 |  |-  ( ( G e. Mnd /\ m e. NN0 /\ X e. B ) -> ( ( m + 1 ) .x. X ) = ( ( m .x. X ) ( +g ` G ) X ) ) | 
						
							| 40 | 35 36 37 39 | syl3anc |  |-  ( ( ( F e. ( G MndHom H ) /\ X e. B ) /\ m e. NN0 ) -> ( ( m + 1 ) .x. X ) = ( ( m .x. X ) ( +g ` G ) X ) ) | 
						
							| 41 | 40 | fveq2d |  |-  ( ( ( F e. ( G MndHom H ) /\ X e. B ) /\ m e. NN0 ) -> ( F ` ( ( m + 1 ) .x. X ) ) = ( F ` ( ( m .x. X ) ( +g ` G ) X ) ) ) | 
						
							| 42 |  | simpll |  |-  ( ( ( F e. ( G MndHom H ) /\ X e. B ) /\ m e. NN0 ) -> F e. ( G MndHom H ) ) | 
						
							| 43 | 34 | ad2antrr |  |-  ( ( ( F e. ( G MndHom H ) /\ m e. NN0 ) /\ X e. B ) -> G e. Mnd ) | 
						
							| 44 |  | simplr |  |-  ( ( ( F e. ( G MndHom H ) /\ m e. NN0 ) /\ X e. B ) -> m e. NN0 ) | 
						
							| 45 |  | simpr |  |-  ( ( ( F e. ( G MndHom H ) /\ m e. NN0 ) /\ X e. B ) -> X e. B ) | 
						
							| 46 | 1 2 43 44 45 | mulgnn0cld |  |-  ( ( ( F e. ( G MndHom H ) /\ m e. NN0 ) /\ X e. B ) -> ( m .x. X ) e. B ) | 
						
							| 47 | 46 | an32s |  |-  ( ( ( F e. ( G MndHom H ) /\ X e. B ) /\ m e. NN0 ) -> ( m .x. X ) e. B ) | 
						
							| 48 |  | eqid |  |-  ( +g ` H ) = ( +g ` H ) | 
						
							| 49 | 1 38 48 | mhmlin |  |-  ( ( F e. ( G MndHom H ) /\ ( m .x. X ) e. B /\ X e. B ) -> ( F ` ( ( m .x. X ) ( +g ` G ) X ) ) = ( ( F ` ( m .x. X ) ) ( +g ` H ) ( F ` X ) ) ) | 
						
							| 50 | 42 47 37 49 | syl3anc |  |-  ( ( ( F e. ( G MndHom H ) /\ X e. B ) /\ m e. NN0 ) -> ( F ` ( ( m .x. X ) ( +g ` G ) X ) ) = ( ( F ` ( m .x. X ) ) ( +g ` H ) ( F ` X ) ) ) | 
						
							| 51 | 41 50 | eqtrd |  |-  ( ( ( F e. ( G MndHom H ) /\ X e. B ) /\ m e. NN0 ) -> ( F ` ( ( m + 1 ) .x. X ) ) = ( ( F ` ( m .x. X ) ) ( +g ` H ) ( F ` X ) ) ) | 
						
							| 52 |  | mhmrcl2 |  |-  ( F e. ( G MndHom H ) -> H e. Mnd ) | 
						
							| 53 | 52 | ad2antrr |  |-  ( ( ( F e. ( G MndHom H ) /\ X e. B ) /\ m e. NN0 ) -> H e. Mnd ) | 
						
							| 54 | 29 | adantr |  |-  ( ( ( F e. ( G MndHom H ) /\ X e. B ) /\ m e. NN0 ) -> ( F ` X ) e. ( Base ` H ) ) | 
						
							| 55 | 27 3 48 | mulgnn0p1 |  |-  ( ( H e. Mnd /\ m e. NN0 /\ ( F ` X ) e. ( Base ` H ) ) -> ( ( m + 1 ) .X. ( F ` X ) ) = ( ( m .X. ( F ` X ) ) ( +g ` H ) ( F ` X ) ) ) | 
						
							| 56 | 53 36 54 55 | syl3anc |  |-  ( ( ( F e. ( G MndHom H ) /\ X e. B ) /\ m e. NN0 ) -> ( ( m + 1 ) .X. ( F ` X ) ) = ( ( m .X. ( F ` X ) ) ( +g ` H ) ( F ` X ) ) ) | 
						
							| 57 | 51 56 | eqeq12d |  |-  ( ( ( F e. ( G MndHom H ) /\ X e. B ) /\ m e. NN0 ) -> ( ( F ` ( ( m + 1 ) .x. X ) ) = ( ( m + 1 ) .X. ( F ` X ) ) <-> ( ( F ` ( m .x. X ) ) ( +g ` H ) ( F ` X ) ) = ( ( m .X. ( F ` X ) ) ( +g ` H ) ( F ` X ) ) ) ) | 
						
							| 58 | 33 57 | imbitrrid |  |-  ( ( ( F e. ( G MndHom H ) /\ X e. B ) /\ m e. NN0 ) -> ( ( F ` ( m .x. X ) ) = ( m .X. ( F ` X ) ) -> ( F ` ( ( m + 1 ) .x. X ) ) = ( ( m + 1 ) .X. ( F ` X ) ) ) ) | 
						
							| 59 | 58 | expcom |  |-  ( m e. NN0 -> ( ( F e. ( G MndHom H ) /\ X e. B ) -> ( ( F ` ( m .x. X ) ) = ( m .X. ( F ` X ) ) -> ( F ` ( ( m + 1 ) .x. X ) ) = ( ( m + 1 ) .X. ( F ` X ) ) ) ) ) | 
						
							| 60 | 59 | a2d |  |-  ( m e. NN0 -> ( ( ( F e. ( G MndHom H ) /\ X e. B ) -> ( F ` ( m .x. X ) ) = ( m .X. ( F ` X ) ) ) -> ( ( F e. ( G MndHom H ) /\ X e. B ) -> ( F ` ( ( m + 1 ) .x. X ) ) = ( ( m + 1 ) .X. ( F ` X ) ) ) ) ) | 
						
							| 61 | 7 11 15 19 32 60 | nn0ind |  |-  ( N e. NN0 -> ( ( F e. ( G MndHom H ) /\ X e. B ) -> ( F ` ( N .x. X ) ) = ( N .X. ( F ` X ) ) ) ) | 
						
							| 62 | 61 | 3impib |  |-  ( ( N e. NN0 /\ F e. ( G MndHom H ) /\ X e. B ) -> ( F ` ( N .x. X ) ) = ( N .X. ( F ` X ) ) ) | 
						
							| 63 | 62 | 3com12 |  |-  ( ( F e. ( G MndHom H ) /\ N e. NN0 /\ X e. B ) -> ( F ` ( N .x. X ) ) = ( N .X. ( F ` X ) ) ) |