Step |
Hyp |
Ref |
Expression |
1 |
|
mhmmulg.b |
|- B = ( Base ` G ) |
2 |
|
mhmmulg.s |
|- .x. = ( .g ` G ) |
3 |
|
mhmmulg.t |
|- .X. = ( .g ` H ) |
4 |
|
fvoveq1 |
|- ( n = 0 -> ( F ` ( n .x. X ) ) = ( F ` ( 0 .x. X ) ) ) |
5 |
|
oveq1 |
|- ( n = 0 -> ( n .X. ( F ` X ) ) = ( 0 .X. ( F ` X ) ) ) |
6 |
4 5
|
eqeq12d |
|- ( n = 0 -> ( ( F ` ( n .x. X ) ) = ( n .X. ( F ` X ) ) <-> ( F ` ( 0 .x. X ) ) = ( 0 .X. ( F ` X ) ) ) ) |
7 |
6
|
imbi2d |
|- ( n = 0 -> ( ( ( F e. ( G MndHom H ) /\ X e. B ) -> ( F ` ( n .x. X ) ) = ( n .X. ( F ` X ) ) ) <-> ( ( F e. ( G MndHom H ) /\ X e. B ) -> ( F ` ( 0 .x. X ) ) = ( 0 .X. ( F ` X ) ) ) ) ) |
8 |
|
fvoveq1 |
|- ( n = m -> ( F ` ( n .x. X ) ) = ( F ` ( m .x. X ) ) ) |
9 |
|
oveq1 |
|- ( n = m -> ( n .X. ( F ` X ) ) = ( m .X. ( F ` X ) ) ) |
10 |
8 9
|
eqeq12d |
|- ( n = m -> ( ( F ` ( n .x. X ) ) = ( n .X. ( F ` X ) ) <-> ( F ` ( m .x. X ) ) = ( m .X. ( F ` X ) ) ) ) |
11 |
10
|
imbi2d |
|- ( n = m -> ( ( ( F e. ( G MndHom H ) /\ X e. B ) -> ( F ` ( n .x. X ) ) = ( n .X. ( F ` X ) ) ) <-> ( ( F e. ( G MndHom H ) /\ X e. B ) -> ( F ` ( m .x. X ) ) = ( m .X. ( F ` X ) ) ) ) ) |
12 |
|
fvoveq1 |
|- ( n = ( m + 1 ) -> ( F ` ( n .x. X ) ) = ( F ` ( ( m + 1 ) .x. X ) ) ) |
13 |
|
oveq1 |
|- ( n = ( m + 1 ) -> ( n .X. ( F ` X ) ) = ( ( m + 1 ) .X. ( F ` X ) ) ) |
14 |
12 13
|
eqeq12d |
|- ( n = ( m + 1 ) -> ( ( F ` ( n .x. X ) ) = ( n .X. ( F ` X ) ) <-> ( F ` ( ( m + 1 ) .x. X ) ) = ( ( m + 1 ) .X. ( F ` X ) ) ) ) |
15 |
14
|
imbi2d |
|- ( n = ( m + 1 ) -> ( ( ( F e. ( G MndHom H ) /\ X e. B ) -> ( F ` ( n .x. X ) ) = ( n .X. ( F ` X ) ) ) <-> ( ( F e. ( G MndHom H ) /\ X e. B ) -> ( F ` ( ( m + 1 ) .x. X ) ) = ( ( m + 1 ) .X. ( F ` X ) ) ) ) ) |
16 |
|
fvoveq1 |
|- ( n = N -> ( F ` ( n .x. X ) ) = ( F ` ( N .x. X ) ) ) |
17 |
|
oveq1 |
|- ( n = N -> ( n .X. ( F ` X ) ) = ( N .X. ( F ` X ) ) ) |
18 |
16 17
|
eqeq12d |
|- ( n = N -> ( ( F ` ( n .x. X ) ) = ( n .X. ( F ` X ) ) <-> ( F ` ( N .x. X ) ) = ( N .X. ( F ` X ) ) ) ) |
19 |
18
|
imbi2d |
|- ( n = N -> ( ( ( F e. ( G MndHom H ) /\ X e. B ) -> ( F ` ( n .x. X ) ) = ( n .X. ( F ` X ) ) ) <-> ( ( F e. ( G MndHom H ) /\ X e. B ) -> ( F ` ( N .x. X ) ) = ( N .X. ( F ` X ) ) ) ) ) |
20 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
21 |
|
eqid |
|- ( 0g ` H ) = ( 0g ` H ) |
22 |
20 21
|
mhm0 |
|- ( F e. ( G MndHom H ) -> ( F ` ( 0g ` G ) ) = ( 0g ` H ) ) |
23 |
22
|
adantr |
|- ( ( F e. ( G MndHom H ) /\ X e. B ) -> ( F ` ( 0g ` G ) ) = ( 0g ` H ) ) |
24 |
1 20 2
|
mulg0 |
|- ( X e. B -> ( 0 .x. X ) = ( 0g ` G ) ) |
25 |
24
|
adantl |
|- ( ( F e. ( G MndHom H ) /\ X e. B ) -> ( 0 .x. X ) = ( 0g ` G ) ) |
26 |
25
|
fveq2d |
|- ( ( F e. ( G MndHom H ) /\ X e. B ) -> ( F ` ( 0 .x. X ) ) = ( F ` ( 0g ` G ) ) ) |
27 |
|
eqid |
|- ( Base ` H ) = ( Base ` H ) |
28 |
1 27
|
mhmf |
|- ( F e. ( G MndHom H ) -> F : B --> ( Base ` H ) ) |
29 |
28
|
ffvelrnda |
|- ( ( F e. ( G MndHom H ) /\ X e. B ) -> ( F ` X ) e. ( Base ` H ) ) |
30 |
27 21 3
|
mulg0 |
|- ( ( F ` X ) e. ( Base ` H ) -> ( 0 .X. ( F ` X ) ) = ( 0g ` H ) ) |
31 |
29 30
|
syl |
|- ( ( F e. ( G MndHom H ) /\ X e. B ) -> ( 0 .X. ( F ` X ) ) = ( 0g ` H ) ) |
32 |
23 26 31
|
3eqtr4d |
|- ( ( F e. ( G MndHom H ) /\ X e. B ) -> ( F ` ( 0 .x. X ) ) = ( 0 .X. ( F ` X ) ) ) |
33 |
|
oveq1 |
|- ( ( F ` ( m .x. X ) ) = ( m .X. ( F ` X ) ) -> ( ( F ` ( m .x. X ) ) ( +g ` H ) ( F ` X ) ) = ( ( m .X. ( F ` X ) ) ( +g ` H ) ( F ` X ) ) ) |
34 |
|
mhmrcl1 |
|- ( F e. ( G MndHom H ) -> G e. Mnd ) |
35 |
34
|
ad2antrr |
|- ( ( ( F e. ( G MndHom H ) /\ X e. B ) /\ m e. NN0 ) -> G e. Mnd ) |
36 |
|
simpr |
|- ( ( ( F e. ( G MndHom H ) /\ X e. B ) /\ m e. NN0 ) -> m e. NN0 ) |
37 |
|
simplr |
|- ( ( ( F e. ( G MndHom H ) /\ X e. B ) /\ m e. NN0 ) -> X e. B ) |
38 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
39 |
1 2 38
|
mulgnn0p1 |
|- ( ( G e. Mnd /\ m e. NN0 /\ X e. B ) -> ( ( m + 1 ) .x. X ) = ( ( m .x. X ) ( +g ` G ) X ) ) |
40 |
35 36 37 39
|
syl3anc |
|- ( ( ( F e. ( G MndHom H ) /\ X e. B ) /\ m e. NN0 ) -> ( ( m + 1 ) .x. X ) = ( ( m .x. X ) ( +g ` G ) X ) ) |
41 |
40
|
fveq2d |
|- ( ( ( F e. ( G MndHom H ) /\ X e. B ) /\ m e. NN0 ) -> ( F ` ( ( m + 1 ) .x. X ) ) = ( F ` ( ( m .x. X ) ( +g ` G ) X ) ) ) |
42 |
|
simpll |
|- ( ( ( F e. ( G MndHom H ) /\ X e. B ) /\ m e. NN0 ) -> F e. ( G MndHom H ) ) |
43 |
34
|
ad2antrr |
|- ( ( ( F e. ( G MndHom H ) /\ m e. NN0 ) /\ X e. B ) -> G e. Mnd ) |
44 |
|
simplr |
|- ( ( ( F e. ( G MndHom H ) /\ m e. NN0 ) /\ X e. B ) -> m e. NN0 ) |
45 |
|
simpr |
|- ( ( ( F e. ( G MndHom H ) /\ m e. NN0 ) /\ X e. B ) -> X e. B ) |
46 |
1 2
|
mulgnn0cl |
|- ( ( G e. Mnd /\ m e. NN0 /\ X e. B ) -> ( m .x. X ) e. B ) |
47 |
43 44 45 46
|
syl3anc |
|- ( ( ( F e. ( G MndHom H ) /\ m e. NN0 ) /\ X e. B ) -> ( m .x. X ) e. B ) |
48 |
47
|
an32s |
|- ( ( ( F e. ( G MndHom H ) /\ X e. B ) /\ m e. NN0 ) -> ( m .x. X ) e. B ) |
49 |
|
eqid |
|- ( +g ` H ) = ( +g ` H ) |
50 |
1 38 49
|
mhmlin |
|- ( ( F e. ( G MndHom H ) /\ ( m .x. X ) e. B /\ X e. B ) -> ( F ` ( ( m .x. X ) ( +g ` G ) X ) ) = ( ( F ` ( m .x. X ) ) ( +g ` H ) ( F ` X ) ) ) |
51 |
42 48 37 50
|
syl3anc |
|- ( ( ( F e. ( G MndHom H ) /\ X e. B ) /\ m e. NN0 ) -> ( F ` ( ( m .x. X ) ( +g ` G ) X ) ) = ( ( F ` ( m .x. X ) ) ( +g ` H ) ( F ` X ) ) ) |
52 |
41 51
|
eqtrd |
|- ( ( ( F e. ( G MndHom H ) /\ X e. B ) /\ m e. NN0 ) -> ( F ` ( ( m + 1 ) .x. X ) ) = ( ( F ` ( m .x. X ) ) ( +g ` H ) ( F ` X ) ) ) |
53 |
|
mhmrcl2 |
|- ( F e. ( G MndHom H ) -> H e. Mnd ) |
54 |
53
|
ad2antrr |
|- ( ( ( F e. ( G MndHom H ) /\ X e. B ) /\ m e. NN0 ) -> H e. Mnd ) |
55 |
29
|
adantr |
|- ( ( ( F e. ( G MndHom H ) /\ X e. B ) /\ m e. NN0 ) -> ( F ` X ) e. ( Base ` H ) ) |
56 |
27 3 49
|
mulgnn0p1 |
|- ( ( H e. Mnd /\ m e. NN0 /\ ( F ` X ) e. ( Base ` H ) ) -> ( ( m + 1 ) .X. ( F ` X ) ) = ( ( m .X. ( F ` X ) ) ( +g ` H ) ( F ` X ) ) ) |
57 |
54 36 55 56
|
syl3anc |
|- ( ( ( F e. ( G MndHom H ) /\ X e. B ) /\ m e. NN0 ) -> ( ( m + 1 ) .X. ( F ` X ) ) = ( ( m .X. ( F ` X ) ) ( +g ` H ) ( F ` X ) ) ) |
58 |
52 57
|
eqeq12d |
|- ( ( ( F e. ( G MndHom H ) /\ X e. B ) /\ m e. NN0 ) -> ( ( F ` ( ( m + 1 ) .x. X ) ) = ( ( m + 1 ) .X. ( F ` X ) ) <-> ( ( F ` ( m .x. X ) ) ( +g ` H ) ( F ` X ) ) = ( ( m .X. ( F ` X ) ) ( +g ` H ) ( F ` X ) ) ) ) |
59 |
33 58
|
syl5ibr |
|- ( ( ( F e. ( G MndHom H ) /\ X e. B ) /\ m e. NN0 ) -> ( ( F ` ( m .x. X ) ) = ( m .X. ( F ` X ) ) -> ( F ` ( ( m + 1 ) .x. X ) ) = ( ( m + 1 ) .X. ( F ` X ) ) ) ) |
60 |
59
|
expcom |
|- ( m e. NN0 -> ( ( F e. ( G MndHom H ) /\ X e. B ) -> ( ( F ` ( m .x. X ) ) = ( m .X. ( F ` X ) ) -> ( F ` ( ( m + 1 ) .x. X ) ) = ( ( m + 1 ) .X. ( F ` X ) ) ) ) ) |
61 |
60
|
a2d |
|- ( m e. NN0 -> ( ( ( F e. ( G MndHom H ) /\ X e. B ) -> ( F ` ( m .x. X ) ) = ( m .X. ( F ` X ) ) ) -> ( ( F e. ( G MndHom H ) /\ X e. B ) -> ( F ` ( ( m + 1 ) .x. X ) ) = ( ( m + 1 ) .X. ( F ` X ) ) ) ) ) |
62 |
7 11 15 19 32 61
|
nn0ind |
|- ( N e. NN0 -> ( ( F e. ( G MndHom H ) /\ X e. B ) -> ( F ` ( N .x. X ) ) = ( N .X. ( F ` X ) ) ) ) |
63 |
62
|
3impib |
|- ( ( N e. NN0 /\ F e. ( G MndHom H ) /\ X e. B ) -> ( F ` ( N .x. X ) ) = ( N .X. ( F ` X ) ) ) |
64 |
63
|
3com12 |
|- ( ( F e. ( G MndHom H ) /\ N e. NN0 /\ X e. B ) -> ( F ` ( N .x. X ) ) = ( N .X. ( F ` X ) ) ) |