Description: Reverse closure of a monoid homomorphism. (Contributed by Mario Carneiro, 7-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | mhmrcl2 | |- ( F e. ( S MndHom T ) -> T e. Mnd ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mhm | |- MndHom = ( s e. Mnd , t e. Mnd |-> { f e. ( ( Base ` t ) ^m ( Base ` s ) ) | ( A. x e. ( Base ` s ) A. y e. ( Base ` s ) ( f ` ( x ( +g ` s ) y ) ) = ( ( f ` x ) ( +g ` t ) ( f ` y ) ) /\ ( f ` ( 0g ` s ) ) = ( 0g ` t ) ) } ) |
|
2 | 1 | elmpocl2 | |- ( F e. ( S MndHom T ) -> T e. Mnd ) |