| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mhplss.h |
|- H = ( I mHomP R ) |
| 2 |
|
mhplss.p |
|- P = ( I mPoly R ) |
| 3 |
|
mhplss.i |
|- ( ph -> I e. V ) |
| 4 |
|
mhplss.r |
|- ( ph -> R e. Ring ) |
| 5 |
|
mhplss.n |
|- ( ph -> N e. NN0 ) |
| 6 |
4
|
ringgrpd |
|- ( ph -> R e. Grp ) |
| 7 |
1 2 3 6 5
|
mhpsubg |
|- ( ph -> ( H ` N ) e. ( SubGrp ` P ) ) |
| 8 |
|
eqid |
|- ( .s ` P ) = ( .s ` P ) |
| 9 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 10 |
4
|
adantr |
|- ( ( ph /\ ( a e. ( Base ` ( Scalar ` P ) ) /\ b e. ( H ` N ) ) ) -> R e. Ring ) |
| 11 |
2 3 4
|
mplsca |
|- ( ph -> R = ( Scalar ` P ) ) |
| 12 |
11
|
fveq2d |
|- ( ph -> ( Base ` R ) = ( Base ` ( Scalar ` P ) ) ) |
| 13 |
12
|
eqimsscd |
|- ( ph -> ( Base ` ( Scalar ` P ) ) C_ ( Base ` R ) ) |
| 14 |
13
|
sselda |
|- ( ( ph /\ a e. ( Base ` ( Scalar ` P ) ) ) -> a e. ( Base ` R ) ) |
| 15 |
14
|
adantrr |
|- ( ( ph /\ ( a e. ( Base ` ( Scalar ` P ) ) /\ b e. ( H ` N ) ) ) -> a e. ( Base ` R ) ) |
| 16 |
|
simprr |
|- ( ( ph /\ ( a e. ( Base ` ( Scalar ` P ) ) /\ b e. ( H ` N ) ) ) -> b e. ( H ` N ) ) |
| 17 |
1 2 8 9 10 15 16
|
mhpvscacl |
|- ( ( ph /\ ( a e. ( Base ` ( Scalar ` P ) ) /\ b e. ( H ` N ) ) ) -> ( a ( .s ` P ) b ) e. ( H ` N ) ) |
| 18 |
17
|
ralrimivva |
|- ( ph -> A. a e. ( Base ` ( Scalar ` P ) ) A. b e. ( H ` N ) ( a ( .s ` P ) b ) e. ( H ` N ) ) |
| 19 |
2 3 4
|
mpllmodd |
|- ( ph -> P e. LMod ) |
| 20 |
|
eqid |
|- ( Scalar ` P ) = ( Scalar ` P ) |
| 21 |
|
eqid |
|- ( Base ` ( Scalar ` P ) ) = ( Base ` ( Scalar ` P ) ) |
| 22 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
| 23 |
|
eqid |
|- ( LSubSp ` P ) = ( LSubSp ` P ) |
| 24 |
20 21 22 8 23
|
islss4 |
|- ( P e. LMod -> ( ( H ` N ) e. ( LSubSp ` P ) <-> ( ( H ` N ) e. ( SubGrp ` P ) /\ A. a e. ( Base ` ( Scalar ` P ) ) A. b e. ( H ` N ) ( a ( .s ` P ) b ) e. ( H ` N ) ) ) ) |
| 25 |
19 24
|
syl |
|- ( ph -> ( ( H ` N ) e. ( LSubSp ` P ) <-> ( ( H ` N ) e. ( SubGrp ` P ) /\ A. a e. ( Base ` ( Scalar ` P ) ) A. b e. ( H ` N ) ( a ( .s ` P ) b ) e. ( H ` N ) ) ) ) |
| 26 |
7 18 25
|
mpbir2and |
|- ( ph -> ( H ` N ) e. ( LSubSp ` P ) ) |