Step |
Hyp |
Ref |
Expression |
1 |
|
mhpmulcl.h |
|- H = ( I mHomP R ) |
2 |
|
mhpmulcl.y |
|- Y = ( I mPoly R ) |
3 |
|
mhpmulcl.t |
|- .x. = ( .r ` Y ) |
4 |
|
mhpmulcl.r |
|- ( ph -> R e. Ring ) |
5 |
|
mhpmulcl.m |
|- ( ph -> M e. NN0 ) |
6 |
|
mhpmulcl.n |
|- ( ph -> N e. NN0 ) |
7 |
|
mhpmulcl.p |
|- ( ph -> P e. ( H ` M ) ) |
8 |
|
mhpmulcl.q |
|- ( ph -> Q e. ( H ` N ) ) |
9 |
|
eqid |
|- ( Base ` Y ) = ( Base ` Y ) |
10 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
11 |
|
eqid |
|- { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
12 |
|
reldmmhp |
|- Rel dom mHomP |
13 |
12 1 7
|
elfvov1 |
|- ( ph -> I e. _V ) |
14 |
1 2 9 13 4 5 7
|
mhpmpl |
|- ( ph -> P e. ( Base ` Y ) ) |
15 |
1 2 9 13 4 6 8
|
mhpmpl |
|- ( ph -> Q e. ( Base ` Y ) ) |
16 |
2 9 10 3 11 14 15
|
mplmul |
|- ( ph -> ( P .x. Q ) = ( d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |-> ( R gsum ( e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ d } |-> ( ( P ` e ) ( .r ` R ) ( Q ` ( d oF - e ) ) ) ) ) ) ) |
17 |
16
|
adantr |
|- ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( P .x. Q ) = ( d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |-> ( R gsum ( e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ d } |-> ( ( P ` e ) ( .r ` R ) ( Q ` ( d oF - e ) ) ) ) ) ) ) |
18 |
|
breq2 |
|- ( d = x -> ( c oR <_ d <-> c oR <_ x ) ) |
19 |
18
|
rabbidv |
|- ( d = x -> { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ d } = { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) |
20 |
|
fvoveq1 |
|- ( d = x -> ( Q ` ( d oF - e ) ) = ( Q ` ( x oF - e ) ) ) |
21 |
20
|
oveq2d |
|- ( d = x -> ( ( P ` e ) ( .r ` R ) ( Q ` ( d oF - e ) ) ) = ( ( P ` e ) ( .r ` R ) ( Q ` ( x oF - e ) ) ) ) |
22 |
19 21
|
mpteq12dv |
|- ( d = x -> ( e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ d } |-> ( ( P ` e ) ( .r ` R ) ( Q ` ( d oF - e ) ) ) ) = ( e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } |-> ( ( P ` e ) ( .r ` R ) ( Q ` ( x oF - e ) ) ) ) ) |
23 |
22
|
oveq2d |
|- ( d = x -> ( R gsum ( e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ d } |-> ( ( P ` e ) ( .r ` R ) ( Q ` ( d oF - e ) ) ) ) ) = ( R gsum ( e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } |-> ( ( P ` e ) ( .r ` R ) ( Q ` ( x oF - e ) ) ) ) ) ) |
24 |
23
|
adantl |
|- ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ d = x ) -> ( R gsum ( e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ d } |-> ( ( P ` e ) ( .r ` R ) ( Q ` ( d oF - e ) ) ) ) ) = ( R gsum ( e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } |-> ( ( P ` e ) ( .r ` R ) ( Q ` ( x oF - e ) ) ) ) ) ) |
25 |
|
simpr |
|- ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) |
26 |
|
ovexd |
|- ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( R gsum ( e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } |-> ( ( P ` e ) ( .r ` R ) ( Q ` ( x oF - e ) ) ) ) ) e. _V ) |
27 |
17 24 25 26
|
fvmptd |
|- ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( ( P .x. Q ) ` x ) = ( R gsum ( e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } |-> ( ( P ` e ) ( .r ` R ) ( Q ` ( x oF - e ) ) ) ) ) ) |
28 |
27
|
neeq1d |
|- ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( ( ( P .x. Q ) ` x ) =/= ( 0g ` R ) <-> ( R gsum ( e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } |-> ( ( P ` e ) ( .r ` R ) ( Q ` ( x oF - e ) ) ) ) ) =/= ( 0g ` R ) ) ) |
29 |
|
simp-4l |
|- ( ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) /\ ( ( CCfld |`s NN0 ) gsum e ) =/= M ) -> ph ) |
30 |
|
oveq2 |
|- ( c = e -> ( ( CCfld |`s NN0 ) gsum c ) = ( ( CCfld |`s NN0 ) gsum e ) ) |
31 |
30
|
eqeq1d |
|- ( c = e -> ( ( ( CCfld |`s NN0 ) gsum c ) = M <-> ( ( CCfld |`s NN0 ) gsum e ) = M ) ) |
32 |
31
|
necon3bbid |
|- ( c = e -> ( -. ( ( CCfld |`s NN0 ) gsum c ) = M <-> ( ( CCfld |`s NN0 ) gsum e ) =/= M ) ) |
33 |
|
simplr |
|- ( ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) /\ ( ( CCfld |`s NN0 ) gsum e ) =/= M ) -> e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) |
34 |
|
elrabi |
|- ( e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } -> e e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) |
35 |
33 34
|
syl |
|- ( ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) /\ ( ( CCfld |`s NN0 ) gsum e ) =/= M ) -> e e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) |
36 |
|
simpr |
|- ( ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) /\ ( ( CCfld |`s NN0 ) gsum e ) =/= M ) -> ( ( CCfld |`s NN0 ) gsum e ) =/= M ) |
37 |
32 35 36
|
elrabd |
|- ( ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) /\ ( ( CCfld |`s NN0 ) gsum e ) =/= M ) -> e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | -. ( ( CCfld |`s NN0 ) gsum c ) = M } ) |
38 |
|
notrab |
|- ( { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } \ { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum c ) = M } ) = { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | -. ( ( CCfld |`s NN0 ) gsum c ) = M } |
39 |
37 38
|
eleqtrrdi |
|- ( ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) /\ ( ( CCfld |`s NN0 ) gsum e ) =/= M ) -> e e. ( { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } \ { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum c ) = M } ) ) |
40 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
41 |
2 40 9 11 14
|
mplelf |
|- ( ph -> P : { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } --> ( Base ` R ) ) |
42 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
43 |
1 42 11 13 4 5 7
|
mhpdeg |
|- ( ph -> ( P supp ( 0g ` R ) ) C_ { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum c ) = M } ) |
44 |
|
ovex |
|- ( NN0 ^m I ) e. _V |
45 |
44
|
rabex |
|- { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } e. _V |
46 |
45
|
a1i |
|- ( ph -> { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } e. _V ) |
47 |
|
fvexd |
|- ( ph -> ( 0g ` R ) e. _V ) |
48 |
41 43 46 47
|
suppssr |
|- ( ( ph /\ e e. ( { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } \ { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum c ) = M } ) ) -> ( P ` e ) = ( 0g ` R ) ) |
49 |
29 39 48
|
syl2anc |
|- ( ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) /\ ( ( CCfld |`s NN0 ) gsum e ) =/= M ) -> ( P ` e ) = ( 0g ` R ) ) |
50 |
49
|
oveq1d |
|- ( ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) /\ ( ( CCfld |`s NN0 ) gsum e ) =/= M ) -> ( ( P ` e ) ( .r ` R ) ( Q ` ( x oF - e ) ) ) = ( ( 0g ` R ) ( .r ` R ) ( Q ` ( x oF - e ) ) ) ) |
51 |
4
|
ad4antr |
|- ( ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) /\ ( ( CCfld |`s NN0 ) gsum e ) =/= M ) -> R e. Ring ) |
52 |
15
|
ad4antr |
|- ( ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) /\ ( ( CCfld |`s NN0 ) gsum e ) =/= M ) -> Q e. ( Base ` Y ) ) |
53 |
2 40 9 11 52
|
mplelf |
|- ( ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) /\ ( ( CCfld |`s NN0 ) gsum e ) =/= M ) -> Q : { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } --> ( Base ` R ) ) |
54 |
|
simp-4r |
|- ( ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) /\ ( ( CCfld |`s NN0 ) gsum e ) =/= M ) -> x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) |
55 |
|
eqid |
|- { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } = { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } |
56 |
11 55
|
psrbagconcl |
|- ( ( x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) -> ( x oF - e ) e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) |
57 |
54 33 56
|
syl2anc |
|- ( ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) /\ ( ( CCfld |`s NN0 ) gsum e ) =/= M ) -> ( x oF - e ) e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) |
58 |
|
elrabi |
|- ( ( x oF - e ) e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } -> ( x oF - e ) e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) |
59 |
57 58
|
syl |
|- ( ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) /\ ( ( CCfld |`s NN0 ) gsum e ) =/= M ) -> ( x oF - e ) e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) |
60 |
53 59
|
ffvelcdmd |
|- ( ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) /\ ( ( CCfld |`s NN0 ) gsum e ) =/= M ) -> ( Q ` ( x oF - e ) ) e. ( Base ` R ) ) |
61 |
40 10 42
|
ringlz |
|- ( ( R e. Ring /\ ( Q ` ( x oF - e ) ) e. ( Base ` R ) ) -> ( ( 0g ` R ) ( .r ` R ) ( Q ` ( x oF - e ) ) ) = ( 0g ` R ) ) |
62 |
51 60 61
|
syl2anc |
|- ( ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) /\ ( ( CCfld |`s NN0 ) gsum e ) =/= M ) -> ( ( 0g ` R ) ( .r ` R ) ( Q ` ( x oF - e ) ) ) = ( 0g ` R ) ) |
63 |
50 62
|
eqtrd |
|- ( ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) /\ ( ( CCfld |`s NN0 ) gsum e ) =/= M ) -> ( ( P ` e ) ( .r ` R ) ( Q ` ( x oF - e ) ) ) = ( 0g ` R ) ) |
64 |
|
simp-4l |
|- ( ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) /\ ( ( CCfld |`s NN0 ) gsum ( x oF - e ) ) =/= N ) -> ph ) |
65 |
|
oveq2 |
|- ( c = ( x oF - e ) -> ( ( CCfld |`s NN0 ) gsum c ) = ( ( CCfld |`s NN0 ) gsum ( x oF - e ) ) ) |
66 |
65
|
eqeq1d |
|- ( c = ( x oF - e ) -> ( ( ( CCfld |`s NN0 ) gsum c ) = N <-> ( ( CCfld |`s NN0 ) gsum ( x oF - e ) ) = N ) ) |
67 |
66
|
necon3bbid |
|- ( c = ( x oF - e ) -> ( -. ( ( CCfld |`s NN0 ) gsum c ) = N <-> ( ( CCfld |`s NN0 ) gsum ( x oF - e ) ) =/= N ) ) |
68 |
|
simp-4r |
|- ( ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) /\ ( ( CCfld |`s NN0 ) gsum ( x oF - e ) ) =/= N ) -> x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) |
69 |
|
simplr |
|- ( ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) /\ ( ( CCfld |`s NN0 ) gsum ( x oF - e ) ) =/= N ) -> e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) |
70 |
68 69 56
|
syl2anc |
|- ( ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) /\ ( ( CCfld |`s NN0 ) gsum ( x oF - e ) ) =/= N ) -> ( x oF - e ) e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) |
71 |
70 58
|
syl |
|- ( ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) /\ ( ( CCfld |`s NN0 ) gsum ( x oF - e ) ) =/= N ) -> ( x oF - e ) e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) |
72 |
|
simpr |
|- ( ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) /\ ( ( CCfld |`s NN0 ) gsum ( x oF - e ) ) =/= N ) -> ( ( CCfld |`s NN0 ) gsum ( x oF - e ) ) =/= N ) |
73 |
67 71 72
|
elrabd |
|- ( ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) /\ ( ( CCfld |`s NN0 ) gsum ( x oF - e ) ) =/= N ) -> ( x oF - e ) e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | -. ( ( CCfld |`s NN0 ) gsum c ) = N } ) |
74 |
|
notrab |
|- ( { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } \ { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum c ) = N } ) = { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | -. ( ( CCfld |`s NN0 ) gsum c ) = N } |
75 |
73 74
|
eleqtrrdi |
|- ( ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) /\ ( ( CCfld |`s NN0 ) gsum ( x oF - e ) ) =/= N ) -> ( x oF - e ) e. ( { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } \ { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum c ) = N } ) ) |
76 |
2 40 9 11 15
|
mplelf |
|- ( ph -> Q : { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } --> ( Base ` R ) ) |
77 |
1 42 11 13 4 6 8
|
mhpdeg |
|- ( ph -> ( Q supp ( 0g ` R ) ) C_ { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum c ) = N } ) |
78 |
76 77 46 47
|
suppssr |
|- ( ( ph /\ ( x oF - e ) e. ( { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } \ { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum c ) = N } ) ) -> ( Q ` ( x oF - e ) ) = ( 0g ` R ) ) |
79 |
64 75 78
|
syl2anc |
|- ( ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) /\ ( ( CCfld |`s NN0 ) gsum ( x oF - e ) ) =/= N ) -> ( Q ` ( x oF - e ) ) = ( 0g ` R ) ) |
80 |
79
|
oveq2d |
|- ( ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) /\ ( ( CCfld |`s NN0 ) gsum ( x oF - e ) ) =/= N ) -> ( ( P ` e ) ( .r ` R ) ( Q ` ( x oF - e ) ) ) = ( ( P ` e ) ( .r ` R ) ( 0g ` R ) ) ) |
81 |
4
|
ad4antr |
|- ( ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) /\ ( ( CCfld |`s NN0 ) gsum ( x oF - e ) ) =/= N ) -> R e. Ring ) |
82 |
14
|
ad4antr |
|- ( ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) /\ ( ( CCfld |`s NN0 ) gsum ( x oF - e ) ) =/= N ) -> P e. ( Base ` Y ) ) |
83 |
2 40 9 11 82
|
mplelf |
|- ( ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) /\ ( ( CCfld |`s NN0 ) gsum ( x oF - e ) ) =/= N ) -> P : { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } --> ( Base ` R ) ) |
84 |
34
|
adantl |
|- ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) -> e e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) |
85 |
84
|
adantr |
|- ( ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) /\ ( ( CCfld |`s NN0 ) gsum ( x oF - e ) ) =/= N ) -> e e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) |
86 |
83 85
|
ffvelcdmd |
|- ( ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) /\ ( ( CCfld |`s NN0 ) gsum ( x oF - e ) ) =/= N ) -> ( P ` e ) e. ( Base ` R ) ) |
87 |
40 10 42
|
ringrz |
|- ( ( R e. Ring /\ ( P ` e ) e. ( Base ` R ) ) -> ( ( P ` e ) ( .r ` R ) ( 0g ` R ) ) = ( 0g ` R ) ) |
88 |
81 86 87
|
syl2anc |
|- ( ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) /\ ( ( CCfld |`s NN0 ) gsum ( x oF - e ) ) =/= N ) -> ( ( P ` e ) ( .r ` R ) ( 0g ` R ) ) = ( 0g ` R ) ) |
89 |
80 88
|
eqtrd |
|- ( ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) /\ ( ( CCfld |`s NN0 ) gsum ( x oF - e ) ) =/= N ) -> ( ( P ` e ) ( .r ` R ) ( Q ` ( x oF - e ) ) ) = ( 0g ` R ) ) |
90 |
|
nn0subm |
|- NN0 e. ( SubMnd ` CCfld ) |
91 |
|
eqid |
|- ( CCfld |`s NN0 ) = ( CCfld |`s NN0 ) |
92 |
91
|
submbas |
|- ( NN0 e. ( SubMnd ` CCfld ) -> NN0 = ( Base ` ( CCfld |`s NN0 ) ) ) |
93 |
90 92
|
ax-mp |
|- NN0 = ( Base ` ( CCfld |`s NN0 ) ) |
94 |
|
cnfld0 |
|- 0 = ( 0g ` CCfld ) |
95 |
91 94
|
subm0 |
|- ( NN0 e. ( SubMnd ` CCfld ) -> 0 = ( 0g ` ( CCfld |`s NN0 ) ) ) |
96 |
90 95
|
ax-mp |
|- 0 = ( 0g ` ( CCfld |`s NN0 ) ) |
97 |
|
nn0ex |
|- NN0 e. _V |
98 |
|
cnfldadd |
|- + = ( +g ` CCfld ) |
99 |
91 98
|
ressplusg |
|- ( NN0 e. _V -> + = ( +g ` ( CCfld |`s NN0 ) ) ) |
100 |
97 99
|
ax-mp |
|- + = ( +g ` ( CCfld |`s NN0 ) ) |
101 |
|
cnring |
|- CCfld e. Ring |
102 |
|
ringcmn |
|- ( CCfld e. Ring -> CCfld e. CMnd ) |
103 |
101 102
|
ax-mp |
|- CCfld e. CMnd |
104 |
91
|
submcmn |
|- ( ( CCfld e. CMnd /\ NN0 e. ( SubMnd ` CCfld ) ) -> ( CCfld |`s NN0 ) e. CMnd ) |
105 |
103 90 104
|
mp2an |
|- ( CCfld |`s NN0 ) e. CMnd |
106 |
105
|
a1i |
|- ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) -> ( CCfld |`s NN0 ) e. CMnd ) |
107 |
13
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) -> I e. _V ) |
108 |
11
|
psrbagf |
|- ( e e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } -> e : I --> NN0 ) |
109 |
84 108
|
syl |
|- ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) -> e : I --> NN0 ) |
110 |
|
simpllr |
|- ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) -> x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) |
111 |
11
|
psrbagf |
|- ( x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } -> x : I --> NN0 ) |
112 |
110 111
|
syl |
|- ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) -> x : I --> NN0 ) |
113 |
112
|
ffnd |
|- ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) -> x Fn I ) |
114 |
109
|
ffnd |
|- ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) -> e Fn I ) |
115 |
|
inidm |
|- ( I i^i I ) = I |
116 |
|
eqidd |
|- ( ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) /\ i e. I ) -> ( x ` i ) = ( x ` i ) ) |
117 |
|
eqidd |
|- ( ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) /\ i e. I ) -> ( e ` i ) = ( e ` i ) ) |
118 |
113 114 107 107 115 116 117
|
offval |
|- ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) -> ( x oF - e ) = ( i e. I |-> ( ( x ` i ) - ( e ` i ) ) ) ) |
119 |
|
simpl |
|- ( ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) /\ i e. I ) -> ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) ) |
120 |
|
simplr |
|- ( ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) /\ i e. I ) -> e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) |
121 |
|
breq1 |
|- ( c = e -> ( c oR <_ x <-> e oR <_ x ) ) |
122 |
121
|
elrab |
|- ( e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } <-> ( e e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } /\ e oR <_ x ) ) |
123 |
122
|
simprbi |
|- ( e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } -> e oR <_ x ) |
124 |
120 123
|
syl |
|- ( ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) /\ i e. I ) -> e oR <_ x ) |
125 |
|
simpr |
|- ( ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) /\ i e. I ) -> i e. I ) |
126 |
114 113 107 107 115 117 116
|
ofrval |
|- ( ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) /\ e oR <_ x /\ i e. I ) -> ( e ` i ) <_ ( x ` i ) ) |
127 |
119 124 125 126
|
syl3anc |
|- ( ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) /\ i e. I ) -> ( e ` i ) <_ ( x ` i ) ) |
128 |
109
|
ffvelcdmda |
|- ( ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) /\ i e. I ) -> ( e ` i ) e. NN0 ) |
129 |
112
|
ffvelcdmda |
|- ( ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) /\ i e. I ) -> ( x ` i ) e. NN0 ) |
130 |
|
nn0sub |
|- ( ( ( e ` i ) e. NN0 /\ ( x ` i ) e. NN0 ) -> ( ( e ` i ) <_ ( x ` i ) <-> ( ( x ` i ) - ( e ` i ) ) e. NN0 ) ) |
131 |
128 129 130
|
syl2anc |
|- ( ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) /\ i e. I ) -> ( ( e ` i ) <_ ( x ` i ) <-> ( ( x ` i ) - ( e ` i ) ) e. NN0 ) ) |
132 |
127 131
|
mpbid |
|- ( ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) /\ i e. I ) -> ( ( x ` i ) - ( e ` i ) ) e. NN0 ) |
133 |
118 132
|
fmpt3d |
|- ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) -> ( x oF - e ) : I --> NN0 ) |
134 |
109
|
ffund |
|- ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) -> Fun e ) |
135 |
|
c0ex |
|- 0 e. _V |
136 |
107 135
|
jctir |
|- ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) -> ( I e. _V /\ 0 e. _V ) ) |
137 |
|
fsuppeq |
|- ( ( I e. _V /\ 0 e. _V ) -> ( e : I --> NN0 -> ( e supp 0 ) = ( `' e " ( NN0 \ { 0 } ) ) ) ) |
138 |
136 109 137
|
sylc |
|- ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) -> ( e supp 0 ) = ( `' e " ( NN0 \ { 0 } ) ) ) |
139 |
|
dfn2 |
|- NN = ( NN0 \ { 0 } ) |
140 |
139
|
imaeq2i |
|- ( `' e " NN ) = ( `' e " ( NN0 \ { 0 } ) ) |
141 |
138 140
|
eqtr4di |
|- ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) -> ( e supp 0 ) = ( `' e " NN ) ) |
142 |
11
|
psrbag |
|- ( I e. _V -> ( e e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } <-> ( e : I --> NN0 /\ ( `' e " NN ) e. Fin ) ) ) |
143 |
107 142
|
syl |
|- ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) -> ( e e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } <-> ( e : I --> NN0 /\ ( `' e " NN ) e. Fin ) ) ) |
144 |
84 143
|
mpbid |
|- ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) -> ( e : I --> NN0 /\ ( `' e " NN ) e. Fin ) ) |
145 |
144
|
simprd |
|- ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) -> ( `' e " NN ) e. Fin ) |
146 |
141 145
|
eqeltrd |
|- ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) -> ( e supp 0 ) e. Fin ) |
147 |
84
|
elexd |
|- ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) -> e e. _V ) |
148 |
|
isfsupp |
|- ( ( e e. _V /\ 0 e. _V ) -> ( e finSupp 0 <-> ( Fun e /\ ( e supp 0 ) e. Fin ) ) ) |
149 |
147 135 148
|
sylancl |
|- ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) -> ( e finSupp 0 <-> ( Fun e /\ ( e supp 0 ) e. Fin ) ) ) |
150 |
134 146 149
|
mpbir2and |
|- ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) -> e finSupp 0 ) |
151 |
113 114 107 107
|
offun |
|- ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) -> Fun ( x oF - e ) ) |
152 |
11
|
psrbagfsupp |
|- ( x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } -> x finSupp 0 ) |
153 |
110 152
|
syl |
|- ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) -> x finSupp 0 ) |
154 |
153 150
|
fsuppunfi |
|- ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) -> ( ( x supp 0 ) u. ( e supp 0 ) ) e. Fin ) |
155 |
|
0nn0 |
|- 0 e. NN0 |
156 |
155
|
a1i |
|- ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) -> 0 e. NN0 ) |
157 |
|
0m0e0 |
|- ( 0 - 0 ) = 0 |
158 |
157
|
a1i |
|- ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) -> ( 0 - 0 ) = 0 ) |
159 |
107 156 112 109 158
|
suppofssd |
|- ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) -> ( ( x oF - e ) supp 0 ) C_ ( ( x supp 0 ) u. ( e supp 0 ) ) ) |
160 |
154 159
|
ssfid |
|- ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) -> ( ( x oF - e ) supp 0 ) e. Fin ) |
161 |
|
ovexd |
|- ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) -> ( x oF - e ) e. _V ) |
162 |
|
isfsupp |
|- ( ( ( x oF - e ) e. _V /\ 0 e. _V ) -> ( ( x oF - e ) finSupp 0 <-> ( Fun ( x oF - e ) /\ ( ( x oF - e ) supp 0 ) e. Fin ) ) ) |
163 |
161 135 162
|
sylancl |
|- ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) -> ( ( x oF - e ) finSupp 0 <-> ( Fun ( x oF - e ) /\ ( ( x oF - e ) supp 0 ) e. Fin ) ) ) |
164 |
151 160 163
|
mpbir2and |
|- ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) -> ( x oF - e ) finSupp 0 ) |
165 |
93 96 100 106 107 109 133 150 164
|
gsumadd |
|- ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) -> ( ( CCfld |`s NN0 ) gsum ( e oF + ( x oF - e ) ) ) = ( ( ( CCfld |`s NN0 ) gsum e ) + ( ( CCfld |`s NN0 ) gsum ( x oF - e ) ) ) ) |
166 |
109
|
ffvelcdmda |
|- ( ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) /\ b e. I ) -> ( e ` b ) e. NN0 ) |
167 |
166
|
nn0cnd |
|- ( ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) /\ b e. I ) -> ( e ` b ) e. CC ) |
168 |
112
|
ffvelcdmda |
|- ( ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) /\ b e. I ) -> ( x ` b ) e. NN0 ) |
169 |
168
|
nn0cnd |
|- ( ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) /\ b e. I ) -> ( x ` b ) e. CC ) |
170 |
167 169
|
pncan3d |
|- ( ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) /\ b e. I ) -> ( ( e ` b ) + ( ( x ` b ) - ( e ` b ) ) ) = ( x ` b ) ) |
171 |
170
|
mpteq2dva |
|- ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) -> ( b e. I |-> ( ( e ` b ) + ( ( x ` b ) - ( e ` b ) ) ) ) = ( b e. I |-> ( x ` b ) ) ) |
172 |
|
fvexd |
|- ( ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) /\ b e. I ) -> ( e ` b ) e. _V ) |
173 |
|
ovexd |
|- ( ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) /\ b e. I ) -> ( ( x ` b ) - ( e ` b ) ) e. _V ) |
174 |
109
|
feqmptd |
|- ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) -> e = ( b e. I |-> ( e ` b ) ) ) |
175 |
112
|
feqmptd |
|- ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) -> x = ( b e. I |-> ( x ` b ) ) ) |
176 |
107 168 166 175 174
|
offval2 |
|- ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) -> ( x oF - e ) = ( b e. I |-> ( ( x ` b ) - ( e ` b ) ) ) ) |
177 |
107 172 173 174 176
|
offval2 |
|- ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) -> ( e oF + ( x oF - e ) ) = ( b e. I |-> ( ( e ` b ) + ( ( x ` b ) - ( e ` b ) ) ) ) ) |
178 |
171 177 175
|
3eqtr4d |
|- ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) -> ( e oF + ( x oF - e ) ) = x ) |
179 |
178
|
oveq2d |
|- ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) -> ( ( CCfld |`s NN0 ) gsum ( e oF + ( x oF - e ) ) ) = ( ( CCfld |`s NN0 ) gsum x ) ) |
180 |
165 179
|
eqtr3d |
|- ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) -> ( ( ( CCfld |`s NN0 ) gsum e ) + ( ( CCfld |`s NN0 ) gsum ( x oF - e ) ) ) = ( ( CCfld |`s NN0 ) gsum x ) ) |
181 |
|
simplr |
|- ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) -> ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) |
182 |
180 181
|
eqnetrd |
|- ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) -> ( ( ( CCfld |`s NN0 ) gsum e ) + ( ( CCfld |`s NN0 ) gsum ( x oF - e ) ) ) =/= ( M + N ) ) |
183 |
|
oveq12 |
|- ( ( ( ( CCfld |`s NN0 ) gsum e ) = M /\ ( ( CCfld |`s NN0 ) gsum ( x oF - e ) ) = N ) -> ( ( ( CCfld |`s NN0 ) gsum e ) + ( ( CCfld |`s NN0 ) gsum ( x oF - e ) ) ) = ( M + N ) ) |
184 |
183
|
a1i |
|- ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) -> ( ( ( ( CCfld |`s NN0 ) gsum e ) = M /\ ( ( CCfld |`s NN0 ) gsum ( x oF - e ) ) = N ) -> ( ( ( CCfld |`s NN0 ) gsum e ) + ( ( CCfld |`s NN0 ) gsum ( x oF - e ) ) ) = ( M + N ) ) ) |
185 |
184
|
necon3ad |
|- ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) -> ( ( ( ( CCfld |`s NN0 ) gsum e ) + ( ( CCfld |`s NN0 ) gsum ( x oF - e ) ) ) =/= ( M + N ) -> -. ( ( ( CCfld |`s NN0 ) gsum e ) = M /\ ( ( CCfld |`s NN0 ) gsum ( x oF - e ) ) = N ) ) ) |
186 |
182 185
|
mpd |
|- ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) -> -. ( ( ( CCfld |`s NN0 ) gsum e ) = M /\ ( ( CCfld |`s NN0 ) gsum ( x oF - e ) ) = N ) ) |
187 |
|
neorian |
|- ( ( ( ( CCfld |`s NN0 ) gsum e ) =/= M \/ ( ( CCfld |`s NN0 ) gsum ( x oF - e ) ) =/= N ) <-> -. ( ( ( CCfld |`s NN0 ) gsum e ) = M /\ ( ( CCfld |`s NN0 ) gsum ( x oF - e ) ) = N ) ) |
188 |
186 187
|
sylibr |
|- ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) -> ( ( ( CCfld |`s NN0 ) gsum e ) =/= M \/ ( ( CCfld |`s NN0 ) gsum ( x oF - e ) ) =/= N ) ) |
189 |
63 89 188
|
mpjaodan |
|- ( ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) /\ e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } ) -> ( ( P ` e ) ( .r ` R ) ( Q ` ( x oF - e ) ) ) = ( 0g ` R ) ) |
190 |
189
|
mpteq2dva |
|- ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) -> ( e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } |-> ( ( P ` e ) ( .r ` R ) ( Q ` ( x oF - e ) ) ) ) = ( e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } |-> ( 0g ` R ) ) ) |
191 |
190
|
oveq2d |
|- ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) -> ( R gsum ( e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } |-> ( ( P ` e ) ( .r ` R ) ( Q ` ( x oF - e ) ) ) ) ) = ( R gsum ( e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } |-> ( 0g ` R ) ) ) ) |
192 |
|
ringmnd |
|- ( R e. Ring -> R e. Mnd ) |
193 |
4 192
|
syl |
|- ( ph -> R e. Mnd ) |
194 |
193
|
ad2antrr |
|- ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) -> R e. Mnd ) |
195 |
45
|
rabex |
|- { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } e. _V |
196 |
42
|
gsumz |
|- ( ( R e. Mnd /\ { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } e. _V ) -> ( R gsum ( e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } |-> ( 0g ` R ) ) ) = ( 0g ` R ) ) |
197 |
194 195 196
|
sylancl |
|- ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) -> ( R gsum ( e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } |-> ( 0g ` R ) ) ) = ( 0g ` R ) ) |
198 |
191 197
|
eqtrd |
|- ( ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) ) -> ( R gsum ( e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } |-> ( ( P ` e ) ( .r ` R ) ( Q ` ( x oF - e ) ) ) ) ) = ( 0g ` R ) ) |
199 |
198
|
ex |
|- ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( ( ( CCfld |`s NN0 ) gsum x ) =/= ( M + N ) -> ( R gsum ( e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } |-> ( ( P ` e ) ( .r ` R ) ( Q ` ( x oF - e ) ) ) ) ) = ( 0g ` R ) ) ) |
200 |
199
|
necon1d |
|- ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( ( R gsum ( e e. { c e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | c oR <_ x } |-> ( ( P ` e ) ( .r ` R ) ( Q ` ( x oF - e ) ) ) ) ) =/= ( 0g ` R ) -> ( ( CCfld |`s NN0 ) gsum x ) = ( M + N ) ) ) |
201 |
28 200
|
sylbid |
|- ( ( ph /\ x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( ( ( P .x. Q ) ` x ) =/= ( 0g ` R ) -> ( ( CCfld |`s NN0 ) gsum x ) = ( M + N ) ) ) |
202 |
201
|
ralrimiva |
|- ( ph -> A. x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ( ( ( P .x. Q ) ` x ) =/= ( 0g ` R ) -> ( ( CCfld |`s NN0 ) gsum x ) = ( M + N ) ) ) |
203 |
5 6
|
nn0addcld |
|- ( ph -> ( M + N ) e. NN0 ) |
204 |
2
|
mplring |
|- ( ( I e. _V /\ R e. Ring ) -> Y e. Ring ) |
205 |
13 4 204
|
syl2anc |
|- ( ph -> Y e. Ring ) |
206 |
9 3
|
ringcl |
|- ( ( Y e. Ring /\ P e. ( Base ` Y ) /\ Q e. ( Base ` Y ) ) -> ( P .x. Q ) e. ( Base ` Y ) ) |
207 |
205 14 15 206
|
syl3anc |
|- ( ph -> ( P .x. Q ) e. ( Base ` Y ) ) |
208 |
1 2 9 42 11 13 4 203 207
|
ismhp3 |
|- ( ph -> ( ( P .x. Q ) e. ( H ` ( M + N ) ) <-> A. x e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ( ( ( P .x. Q ) ` x ) =/= ( 0g ` R ) -> ( ( CCfld |`s NN0 ) gsum x ) = ( M + N ) ) ) ) |
209 |
202 208
|
mpbird |
|- ( ph -> ( P .x. Q ) e. ( H ` ( M + N ) ) ) |