Step |
Hyp |
Ref |
Expression |
1 |
|
mhppwdeg.h |
|- H = ( I mHomP R ) |
2 |
|
mhppwdeg.p |
|- P = ( I mPoly R ) |
3 |
|
mhppwdeg.t |
|- T = ( mulGrp ` P ) |
4 |
|
mhppwdeg.e |
|- .^ = ( .g ` T ) |
5 |
|
mhppwdeg.r |
|- ( ph -> R e. Ring ) |
6 |
|
mhppwdeg.m |
|- ( ph -> M e. NN0 ) |
7 |
|
mhppwdeg.n |
|- ( ph -> N e. NN0 ) |
8 |
|
mhppwdeg.x |
|- ( ph -> X e. ( H ` M ) ) |
9 |
|
oveq1 |
|- ( x = 0 -> ( x .^ X ) = ( 0 .^ X ) ) |
10 |
|
oveq2 |
|- ( x = 0 -> ( M x. x ) = ( M x. 0 ) ) |
11 |
10
|
fveq2d |
|- ( x = 0 -> ( H ` ( M x. x ) ) = ( H ` ( M x. 0 ) ) ) |
12 |
9 11
|
eleq12d |
|- ( x = 0 -> ( ( x .^ X ) e. ( H ` ( M x. x ) ) <-> ( 0 .^ X ) e. ( H ` ( M x. 0 ) ) ) ) |
13 |
|
oveq1 |
|- ( x = y -> ( x .^ X ) = ( y .^ X ) ) |
14 |
|
oveq2 |
|- ( x = y -> ( M x. x ) = ( M x. y ) ) |
15 |
14
|
fveq2d |
|- ( x = y -> ( H ` ( M x. x ) ) = ( H ` ( M x. y ) ) ) |
16 |
13 15
|
eleq12d |
|- ( x = y -> ( ( x .^ X ) e. ( H ` ( M x. x ) ) <-> ( y .^ X ) e. ( H ` ( M x. y ) ) ) ) |
17 |
|
oveq1 |
|- ( x = ( y + 1 ) -> ( x .^ X ) = ( ( y + 1 ) .^ X ) ) |
18 |
|
oveq2 |
|- ( x = ( y + 1 ) -> ( M x. x ) = ( M x. ( y + 1 ) ) ) |
19 |
18
|
fveq2d |
|- ( x = ( y + 1 ) -> ( H ` ( M x. x ) ) = ( H ` ( M x. ( y + 1 ) ) ) ) |
20 |
17 19
|
eleq12d |
|- ( x = ( y + 1 ) -> ( ( x .^ X ) e. ( H ` ( M x. x ) ) <-> ( ( y + 1 ) .^ X ) e. ( H ` ( M x. ( y + 1 ) ) ) ) ) |
21 |
|
oveq1 |
|- ( x = N -> ( x .^ X ) = ( N .^ X ) ) |
22 |
|
oveq2 |
|- ( x = N -> ( M x. x ) = ( M x. N ) ) |
23 |
22
|
fveq2d |
|- ( x = N -> ( H ` ( M x. x ) ) = ( H ` ( M x. N ) ) ) |
24 |
21 23
|
eleq12d |
|- ( x = N -> ( ( x .^ X ) e. ( H ` ( M x. x ) ) <-> ( N .^ X ) e. ( H ` ( M x. N ) ) ) ) |
25 |
|
reldmmhp |
|- Rel dom mHomP |
26 |
25 1 8
|
elfvov1 |
|- ( ph -> I e. _V ) |
27 |
2 26 5
|
mplsca |
|- ( ph -> R = ( Scalar ` P ) ) |
28 |
27
|
fveq2d |
|- ( ph -> ( 1r ` R ) = ( 1r ` ( Scalar ` P ) ) ) |
29 |
28
|
fveq2d |
|- ( ph -> ( ( algSc ` P ) ` ( 1r ` R ) ) = ( ( algSc ` P ) ` ( 1r ` ( Scalar ` P ) ) ) ) |
30 |
|
eqid |
|- ( algSc ` P ) = ( algSc ` P ) |
31 |
|
eqid |
|- ( Scalar ` P ) = ( Scalar ` P ) |
32 |
2
|
mpllmod |
|- ( ( I e. _V /\ R e. Ring ) -> P e. LMod ) |
33 |
26 5 32
|
syl2anc |
|- ( ph -> P e. LMod ) |
34 |
2
|
mplring |
|- ( ( I e. _V /\ R e. Ring ) -> P e. Ring ) |
35 |
26 5 34
|
syl2anc |
|- ( ph -> P e. Ring ) |
36 |
30 31 33 35
|
ascl1 |
|- ( ph -> ( ( algSc ` P ) ` ( 1r ` ( Scalar ` P ) ) ) = ( 1r ` P ) ) |
37 |
29 36
|
eqtrd |
|- ( ph -> ( ( algSc ` P ) ` ( 1r ` R ) ) = ( 1r ` P ) ) |
38 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
39 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
40 |
38 39
|
ringidcl |
|- ( R e. Ring -> ( 1r ` R ) e. ( Base ` R ) ) |
41 |
5 40
|
syl |
|- ( ph -> ( 1r ` R ) e. ( Base ` R ) ) |
42 |
1 2 30 38 26 5 41
|
mhpsclcl |
|- ( ph -> ( ( algSc ` P ) ` ( 1r ` R ) ) e. ( H ` 0 ) ) |
43 |
37 42
|
eqeltrrd |
|- ( ph -> ( 1r ` P ) e. ( H ` 0 ) ) |
44 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
45 |
1 2 44 26 5 6 8
|
mhpmpl |
|- ( ph -> X e. ( Base ` P ) ) |
46 |
3 44
|
mgpbas |
|- ( Base ` P ) = ( Base ` T ) |
47 |
|
eqid |
|- ( 1r ` P ) = ( 1r ` P ) |
48 |
3 47
|
ringidval |
|- ( 1r ` P ) = ( 0g ` T ) |
49 |
46 48 4
|
mulg0 |
|- ( X e. ( Base ` P ) -> ( 0 .^ X ) = ( 1r ` P ) ) |
50 |
45 49
|
syl |
|- ( ph -> ( 0 .^ X ) = ( 1r ` P ) ) |
51 |
6
|
nn0cnd |
|- ( ph -> M e. CC ) |
52 |
51
|
mul01d |
|- ( ph -> ( M x. 0 ) = 0 ) |
53 |
52
|
fveq2d |
|- ( ph -> ( H ` ( M x. 0 ) ) = ( H ` 0 ) ) |
54 |
43 50 53
|
3eltr4d |
|- ( ph -> ( 0 .^ X ) e. ( H ` ( M x. 0 ) ) ) |
55 |
|
eqid |
|- ( .r ` P ) = ( .r ` P ) |
56 |
5
|
ad2antrr |
|- ( ( ( ph /\ y e. NN0 ) /\ ( y .^ X ) e. ( H ` ( M x. y ) ) ) -> R e. Ring ) |
57 |
6
|
ad2antrr |
|- ( ( ( ph /\ y e. NN0 ) /\ ( y .^ X ) e. ( H ` ( M x. y ) ) ) -> M e. NN0 ) |
58 |
|
simplr |
|- ( ( ( ph /\ y e. NN0 ) /\ ( y .^ X ) e. ( H ` ( M x. y ) ) ) -> y e. NN0 ) |
59 |
57 58
|
nn0mulcld |
|- ( ( ( ph /\ y e. NN0 ) /\ ( y .^ X ) e. ( H ` ( M x. y ) ) ) -> ( M x. y ) e. NN0 ) |
60 |
|
simpr |
|- ( ( ( ph /\ y e. NN0 ) /\ ( y .^ X ) e. ( H ` ( M x. y ) ) ) -> ( y .^ X ) e. ( H ` ( M x. y ) ) ) |
61 |
8
|
ad2antrr |
|- ( ( ( ph /\ y e. NN0 ) /\ ( y .^ X ) e. ( H ` ( M x. y ) ) ) -> X e. ( H ` M ) ) |
62 |
1 2 55 56 59 57 60 61
|
mhpmulcl |
|- ( ( ( ph /\ y e. NN0 ) /\ ( y .^ X ) e. ( H ` ( M x. y ) ) ) -> ( ( y .^ X ) ( .r ` P ) X ) e. ( H ` ( ( M x. y ) + M ) ) ) |
63 |
3
|
ringmgp |
|- ( P e. Ring -> T e. Mnd ) |
64 |
35 63
|
syl |
|- ( ph -> T e. Mnd ) |
65 |
64
|
ad2antrr |
|- ( ( ( ph /\ y e. NN0 ) /\ ( y .^ X ) e. ( H ` ( M x. y ) ) ) -> T e. Mnd ) |
66 |
45
|
ad2antrr |
|- ( ( ( ph /\ y e. NN0 ) /\ ( y .^ X ) e. ( H ` ( M x. y ) ) ) -> X e. ( Base ` P ) ) |
67 |
3 55
|
mgpplusg |
|- ( .r ` P ) = ( +g ` T ) |
68 |
46 4 67
|
mulgnn0p1 |
|- ( ( T e. Mnd /\ y e. NN0 /\ X e. ( Base ` P ) ) -> ( ( y + 1 ) .^ X ) = ( ( y .^ X ) ( .r ` P ) X ) ) |
69 |
65 58 66 68
|
syl3anc |
|- ( ( ( ph /\ y e. NN0 ) /\ ( y .^ X ) e. ( H ` ( M x. y ) ) ) -> ( ( y + 1 ) .^ X ) = ( ( y .^ X ) ( .r ` P ) X ) ) |
70 |
51
|
ad2antrr |
|- ( ( ( ph /\ y e. NN0 ) /\ ( y .^ X ) e. ( H ` ( M x. y ) ) ) -> M e. CC ) |
71 |
58
|
nn0cnd |
|- ( ( ( ph /\ y e. NN0 ) /\ ( y .^ X ) e. ( H ` ( M x. y ) ) ) -> y e. CC ) |
72 |
|
1cnd |
|- ( ( ( ph /\ y e. NN0 ) /\ ( y .^ X ) e. ( H ` ( M x. y ) ) ) -> 1 e. CC ) |
73 |
70 71 72
|
adddid |
|- ( ( ( ph /\ y e. NN0 ) /\ ( y .^ X ) e. ( H ` ( M x. y ) ) ) -> ( M x. ( y + 1 ) ) = ( ( M x. y ) + ( M x. 1 ) ) ) |
74 |
70
|
mulridd |
|- ( ( ( ph /\ y e. NN0 ) /\ ( y .^ X ) e. ( H ` ( M x. y ) ) ) -> ( M x. 1 ) = M ) |
75 |
74
|
oveq2d |
|- ( ( ( ph /\ y e. NN0 ) /\ ( y .^ X ) e. ( H ` ( M x. y ) ) ) -> ( ( M x. y ) + ( M x. 1 ) ) = ( ( M x. y ) + M ) ) |
76 |
73 75
|
eqtrd |
|- ( ( ( ph /\ y e. NN0 ) /\ ( y .^ X ) e. ( H ` ( M x. y ) ) ) -> ( M x. ( y + 1 ) ) = ( ( M x. y ) + M ) ) |
77 |
76
|
fveq2d |
|- ( ( ( ph /\ y e. NN0 ) /\ ( y .^ X ) e. ( H ` ( M x. y ) ) ) -> ( H ` ( M x. ( y + 1 ) ) ) = ( H ` ( ( M x. y ) + M ) ) ) |
78 |
62 69 77
|
3eltr4d |
|- ( ( ( ph /\ y e. NN0 ) /\ ( y .^ X ) e. ( H ` ( M x. y ) ) ) -> ( ( y + 1 ) .^ X ) e. ( H ` ( M x. ( y + 1 ) ) ) ) |
79 |
12 16 20 24 54 78
|
nn0indd |
|- ( ( ph /\ N e. NN0 ) -> ( N .^ X ) e. ( H ` ( M x. N ) ) ) |
80 |
7 79
|
mpdan |
|- ( ph -> ( N .^ X ) e. ( H ` ( M x. N ) ) ) |