Description: Closure of the midpoint. (Contributed by Thierry Arnoux, 1-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ismid.p | |- P = ( Base ` G ) |
|
ismid.d | |- .- = ( dist ` G ) |
||
ismid.i | |- I = ( Itv ` G ) |
||
ismid.g | |- ( ph -> G e. TarskiG ) |
||
ismid.1 | |- ( ph -> G TarskiGDim>= 2 ) |
||
midcl.1 | |- ( ph -> A e. P ) |
||
midcl.2 | |- ( ph -> B e. P ) |
||
Assertion | midcl | |- ( ph -> ( A ( midG ` G ) B ) e. P ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismid.p | |- P = ( Base ` G ) |
|
2 | ismid.d | |- .- = ( dist ` G ) |
|
3 | ismid.i | |- I = ( Itv ` G ) |
|
4 | ismid.g | |- ( ph -> G e. TarskiG ) |
|
5 | ismid.1 | |- ( ph -> G TarskiGDim>= 2 ) |
|
6 | midcl.1 | |- ( ph -> A e. P ) |
|
7 | midcl.2 | |- ( ph -> B e. P ) |
|
8 | 1 2 3 4 5 | midf | |- ( ph -> ( midG ` G ) : ( P X. P ) --> P ) |
9 | 8 6 7 | fovrnd | |- ( ph -> ( A ( midG ` G ) B ) e. P ) |