Step |
Hyp |
Ref |
Expression |
1 |
|
colperpex.p |
|- P = ( Base ` G ) |
2 |
|
colperpex.d |
|- .- = ( dist ` G ) |
3 |
|
colperpex.i |
|- I = ( Itv ` G ) |
4 |
|
colperpex.l |
|- L = ( LineG ` G ) |
5 |
|
colperpex.g |
|- ( ph -> G e. TarskiG ) |
6 |
|
mideu.s |
|- S = ( pInvG ` G ) |
7 |
|
mideu.1 |
|- ( ph -> A e. P ) |
8 |
|
mideu.2 |
|- ( ph -> B e. P ) |
9 |
|
mideulem.1 |
|- ( ph -> A =/= B ) |
10 |
|
mideulem.2 |
|- ( ph -> Q e. P ) |
11 |
|
mideulem.3 |
|- ( ph -> O e. P ) |
12 |
|
mideulem.4 |
|- ( ph -> T e. P ) |
13 |
|
mideulem.5 |
|- ( ph -> ( A L B ) ( perpG ` G ) ( Q L B ) ) |
14 |
|
mideulem.6 |
|- ( ph -> ( A L B ) ( perpG ` G ) ( A L O ) ) |
15 |
|
mideulem.7 |
|- ( ph -> T e. ( A L B ) ) |
16 |
|
mideulem.8 |
|- ( ph -> T e. ( Q I O ) ) |
17 |
|
mideulem.9 |
|- ( ph -> ( A .- O ) ( leG ` G ) ( B .- Q ) ) |
18 |
|
simprrl |
|- ( ( ( ( ph /\ r e. P ) /\ ( r e. ( B I Q ) /\ ( A .- O ) = ( B .- r ) ) ) /\ ( x e. P /\ ( B = ( ( S ` x ) ` A ) /\ O = ( ( S ` x ) ` r ) ) ) ) -> B = ( ( S ` x ) ` A ) ) |
19 |
5
|
ad2antrr |
|- ( ( ( ph /\ r e. P ) /\ ( r e. ( B I Q ) /\ ( A .- O ) = ( B .- r ) ) ) -> G e. TarskiG ) |
20 |
7
|
ad2antrr |
|- ( ( ( ph /\ r e. P ) /\ ( r e. ( B I Q ) /\ ( A .- O ) = ( B .- r ) ) ) -> A e. P ) |
21 |
8
|
ad2antrr |
|- ( ( ( ph /\ r e. P ) /\ ( r e. ( B I Q ) /\ ( A .- O ) = ( B .- r ) ) ) -> B e. P ) |
22 |
9
|
ad2antrr |
|- ( ( ( ph /\ r e. P ) /\ ( r e. ( B I Q ) /\ ( A .- O ) = ( B .- r ) ) ) -> A =/= B ) |
23 |
10
|
ad2antrr |
|- ( ( ( ph /\ r e. P ) /\ ( r e. ( B I Q ) /\ ( A .- O ) = ( B .- r ) ) ) -> Q e. P ) |
24 |
11
|
ad2antrr |
|- ( ( ( ph /\ r e. P ) /\ ( r e. ( B I Q ) /\ ( A .- O ) = ( B .- r ) ) ) -> O e. P ) |
25 |
12
|
ad2antrr |
|- ( ( ( ph /\ r e. P ) /\ ( r e. ( B I Q ) /\ ( A .- O ) = ( B .- r ) ) ) -> T e. P ) |
26 |
13
|
ad2antrr |
|- ( ( ( ph /\ r e. P ) /\ ( r e. ( B I Q ) /\ ( A .- O ) = ( B .- r ) ) ) -> ( A L B ) ( perpG ` G ) ( Q L B ) ) |
27 |
14
|
ad2antrr |
|- ( ( ( ph /\ r e. P ) /\ ( r e. ( B I Q ) /\ ( A .- O ) = ( B .- r ) ) ) -> ( A L B ) ( perpG ` G ) ( A L O ) ) |
28 |
15
|
ad2antrr |
|- ( ( ( ph /\ r e. P ) /\ ( r e. ( B I Q ) /\ ( A .- O ) = ( B .- r ) ) ) -> T e. ( A L B ) ) |
29 |
16
|
ad2antrr |
|- ( ( ( ph /\ r e. P ) /\ ( r e. ( B I Q ) /\ ( A .- O ) = ( B .- r ) ) ) -> T e. ( Q I O ) ) |
30 |
|
simplr |
|- ( ( ( ph /\ r e. P ) /\ ( r e. ( B I Q ) /\ ( A .- O ) = ( B .- r ) ) ) -> r e. P ) |
31 |
|
simprl |
|- ( ( ( ph /\ r e. P ) /\ ( r e. ( B I Q ) /\ ( A .- O ) = ( B .- r ) ) ) -> r e. ( B I Q ) ) |
32 |
|
simprr |
|- ( ( ( ph /\ r e. P ) /\ ( r e. ( B I Q ) /\ ( A .- O ) = ( B .- r ) ) ) -> ( A .- O ) = ( B .- r ) ) |
33 |
1 2 3 4 19 6 20 21 22 23 24 25 26 27 28 29 30 31 32
|
opphllem |
|- ( ( ( ph /\ r e. P ) /\ ( r e. ( B I Q ) /\ ( A .- O ) = ( B .- r ) ) ) -> E. x e. P ( B = ( ( S ` x ) ` A ) /\ O = ( ( S ` x ) ` r ) ) ) |
34 |
18 33
|
reximddv |
|- ( ( ( ph /\ r e. P ) /\ ( r e. ( B I Q ) /\ ( A .- O ) = ( B .- r ) ) ) -> E. x e. P B = ( ( S ` x ) ` A ) ) |
35 |
|
eqid |
|- ( leG ` G ) = ( leG ` G ) |
36 |
1 2 3 35 5 7 11 8 10
|
legov |
|- ( ph -> ( ( A .- O ) ( leG ` G ) ( B .- Q ) <-> E. r e. P ( r e. ( B I Q ) /\ ( A .- O ) = ( B .- r ) ) ) ) |
37 |
17 36
|
mpbid |
|- ( ph -> E. r e. P ( r e. ( B I Q ) /\ ( A .- O ) = ( B .- r ) ) ) |
38 |
34 37
|
r19.29a |
|- ( ph -> E. x e. P B = ( ( S ` x ) ` A ) ) |