| Step |
Hyp |
Ref |
Expression |
| 1 |
|
colperpex.p |
|- P = ( Base ` G ) |
| 2 |
|
colperpex.d |
|- .- = ( dist ` G ) |
| 3 |
|
colperpex.i |
|- I = ( Itv ` G ) |
| 4 |
|
colperpex.l |
|- L = ( LineG ` G ) |
| 5 |
|
colperpex.g |
|- ( ph -> G e. TarskiG ) |
| 6 |
|
mideu.s |
|- S = ( pInvG ` G ) |
| 7 |
|
mideu.1 |
|- ( ph -> A e. P ) |
| 8 |
|
mideu.2 |
|- ( ph -> B e. P ) |
| 9 |
|
mideu.3 |
|- ( ph -> G TarskiGDim>= 2 ) |
| 10 |
5
|
adantr |
|- ( ( ph /\ A = B ) -> G e. TarskiG ) |
| 11 |
7
|
adantr |
|- ( ( ph /\ A = B ) -> A e. P ) |
| 12 |
|
eqid |
|- ( S ` A ) = ( S ` A ) |
| 13 |
1 2 3 4 6 10 11 12
|
mircinv |
|- ( ( ph /\ A = B ) -> ( ( S ` A ) ` A ) = A ) |
| 14 |
|
simpr |
|- ( ( ph /\ A = B ) -> A = B ) |
| 15 |
13 14
|
eqtr2d |
|- ( ( ph /\ A = B ) -> B = ( ( S ` A ) ` A ) ) |
| 16 |
|
fveq2 |
|- ( x = A -> ( S ` x ) = ( S ` A ) ) |
| 17 |
16
|
fveq1d |
|- ( x = A -> ( ( S ` x ) ` A ) = ( ( S ` A ) ` A ) ) |
| 18 |
17
|
rspceeqv |
|- ( ( A e. P /\ B = ( ( S ` A ) ` A ) ) -> E. x e. P B = ( ( S ` x ) ` A ) ) |
| 19 |
7 15 18
|
syl2an2r |
|- ( ( ph /\ A = B ) -> E. x e. P B = ( ( S ` x ) ` A ) ) |
| 20 |
5
|
ad3antrrr |
|- ( ( ( ( ph /\ A =/= B ) /\ q e. P ) /\ ( B L q ) ( perpG ` G ) ( A L B ) ) -> G e. TarskiG ) |
| 21 |
20
|
ad4antr |
|- ( ( ( ( ( ( ( ( ph /\ A =/= B ) /\ q e. P ) /\ ( B L q ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ t e. P ) /\ ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( q I p ) ) ) ) /\ ( A .- p ) ( leG ` G ) ( B .- q ) ) -> G e. TarskiG ) |
| 22 |
7
|
ad3antrrr |
|- ( ( ( ( ph /\ A =/= B ) /\ q e. P ) /\ ( B L q ) ( perpG ` G ) ( A L B ) ) -> A e. P ) |
| 23 |
22
|
ad4antr |
|- ( ( ( ( ( ( ( ( ph /\ A =/= B ) /\ q e. P ) /\ ( B L q ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ t e. P ) /\ ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( q I p ) ) ) ) /\ ( A .- p ) ( leG ` G ) ( B .- q ) ) -> A e. P ) |
| 24 |
8
|
ad3antrrr |
|- ( ( ( ( ph /\ A =/= B ) /\ q e. P ) /\ ( B L q ) ( perpG ` G ) ( A L B ) ) -> B e. P ) |
| 25 |
24
|
ad4antr |
|- ( ( ( ( ( ( ( ( ph /\ A =/= B ) /\ q e. P ) /\ ( B L q ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ t e. P ) /\ ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( q I p ) ) ) ) /\ ( A .- p ) ( leG ` G ) ( B .- q ) ) -> B e. P ) |
| 26 |
|
simpllr |
|- ( ( ( ( ph /\ A =/= B ) /\ q e. P ) /\ ( B L q ) ( perpG ` G ) ( A L B ) ) -> A =/= B ) |
| 27 |
26
|
ad4antr |
|- ( ( ( ( ( ( ( ( ph /\ A =/= B ) /\ q e. P ) /\ ( B L q ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ t e. P ) /\ ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( q I p ) ) ) ) /\ ( A .- p ) ( leG ` G ) ( B .- q ) ) -> A =/= B ) |
| 28 |
|
simplr |
|- ( ( ( ( ph /\ A =/= B ) /\ q e. P ) /\ ( B L q ) ( perpG ` G ) ( A L B ) ) -> q e. P ) |
| 29 |
28
|
ad4antr |
|- ( ( ( ( ( ( ( ( ph /\ A =/= B ) /\ q e. P ) /\ ( B L q ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ t e. P ) /\ ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( q I p ) ) ) ) /\ ( A .- p ) ( leG ` G ) ( B .- q ) ) -> q e. P ) |
| 30 |
|
simp-4r |
|- ( ( ( ( ( ( ( ( ph /\ A =/= B ) /\ q e. P ) /\ ( B L q ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ t e. P ) /\ ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( q I p ) ) ) ) /\ ( A .- p ) ( leG ` G ) ( B .- q ) ) -> p e. P ) |
| 31 |
|
simpllr |
|- ( ( ( ( ( ( ( ( ph /\ A =/= B ) /\ q e. P ) /\ ( B L q ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ t e. P ) /\ ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( q I p ) ) ) ) /\ ( A .- p ) ( leG ` G ) ( B .- q ) ) -> t e. P ) |
| 32 |
|
simp-5r |
|- ( ( ( ( ( ( ( ( ph /\ A =/= B ) /\ q e. P ) /\ ( B L q ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ t e. P ) /\ ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( q I p ) ) ) ) /\ ( A .- p ) ( leG ` G ) ( B .- q ) ) -> ( B L q ) ( perpG ` G ) ( A L B ) ) |
| 33 |
4 21 32
|
perpln1 |
|- ( ( ( ( ( ( ( ( ph /\ A =/= B ) /\ q e. P ) /\ ( B L q ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ t e. P ) /\ ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( q I p ) ) ) ) /\ ( A .- p ) ( leG ` G ) ( B .- q ) ) -> ( B L q ) e. ran L ) |
| 34 |
1 3 4 21 23 25 27
|
tgelrnln |
|- ( ( ( ( ( ( ( ( ph /\ A =/= B ) /\ q e. P ) /\ ( B L q ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ t e. P ) /\ ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( q I p ) ) ) ) /\ ( A .- p ) ( leG ` G ) ( B .- q ) ) -> ( A L B ) e. ran L ) |
| 35 |
1 2 3 4 21 33 34 32
|
perpcom |
|- ( ( ( ( ( ( ( ( ph /\ A =/= B ) /\ q e. P ) /\ ( B L q ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ t e. P ) /\ ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( q I p ) ) ) ) /\ ( A .- p ) ( leG ` G ) ( B .- q ) ) -> ( A L B ) ( perpG ` G ) ( B L q ) ) |
| 36 |
1 3 4 21 25 29 33
|
tglnne |
|- ( ( ( ( ( ( ( ( ph /\ A =/= B ) /\ q e. P ) /\ ( B L q ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ t e. P ) /\ ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( q I p ) ) ) ) /\ ( A .- p ) ( leG ` G ) ( B .- q ) ) -> B =/= q ) |
| 37 |
1 3 4 21 25 29 36
|
tglinecom |
|- ( ( ( ( ( ( ( ( ph /\ A =/= B ) /\ q e. P ) /\ ( B L q ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ t e. P ) /\ ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( q I p ) ) ) ) /\ ( A .- p ) ( leG ` G ) ( B .- q ) ) -> ( B L q ) = ( q L B ) ) |
| 38 |
35 37
|
breqtrd |
|- ( ( ( ( ( ( ( ( ph /\ A =/= B ) /\ q e. P ) /\ ( B L q ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ t e. P ) /\ ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( q I p ) ) ) ) /\ ( A .- p ) ( leG ` G ) ( B .- q ) ) -> ( A L B ) ( perpG ` G ) ( q L B ) ) |
| 39 |
|
simplr |
|- ( ( ( ( ( ( ( ( ph /\ A =/= B ) /\ q e. P ) /\ ( B L q ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ t e. P ) /\ ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( q I p ) ) ) ) /\ ( A .- p ) ( leG ` G ) ( B .- q ) ) -> ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( q I p ) ) ) ) |
| 40 |
39
|
simpld |
|- ( ( ( ( ( ( ( ( ph /\ A =/= B ) /\ q e. P ) /\ ( B L q ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ t e. P ) /\ ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( q I p ) ) ) ) /\ ( A .- p ) ( leG ` G ) ( B .- q ) ) -> ( A L p ) ( perpG ` G ) ( A L B ) ) |
| 41 |
4 21 40
|
perpln1 |
|- ( ( ( ( ( ( ( ( ph /\ A =/= B ) /\ q e. P ) /\ ( B L q ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ t e. P ) /\ ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( q I p ) ) ) ) /\ ( A .- p ) ( leG ` G ) ( B .- q ) ) -> ( A L p ) e. ran L ) |
| 42 |
1 2 3 4 21 41 34 40
|
perpcom |
|- ( ( ( ( ( ( ( ( ph /\ A =/= B ) /\ q e. P ) /\ ( B L q ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ t e. P ) /\ ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( q I p ) ) ) ) /\ ( A .- p ) ( leG ` G ) ( B .- q ) ) -> ( A L B ) ( perpG ` G ) ( A L p ) ) |
| 43 |
27
|
neneqd |
|- ( ( ( ( ( ( ( ( ph /\ A =/= B ) /\ q e. P ) /\ ( B L q ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ t e. P ) /\ ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( q I p ) ) ) ) /\ ( A .- p ) ( leG ` G ) ( B .- q ) ) -> -. A = B ) |
| 44 |
39
|
simprd |
|- ( ( ( ( ( ( ( ( ph /\ A =/= B ) /\ q e. P ) /\ ( B L q ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ t e. P ) /\ ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( q I p ) ) ) ) /\ ( A .- p ) ( leG ` G ) ( B .- q ) ) -> ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( q I p ) ) ) |
| 45 |
44
|
simpld |
|- ( ( ( ( ( ( ( ( ph /\ A =/= B ) /\ q e. P ) /\ ( B L q ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ t e. P ) /\ ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( q I p ) ) ) ) /\ ( A .- p ) ( leG ` G ) ( B .- q ) ) -> ( t e. ( A L B ) \/ A = B ) ) |
| 46 |
45
|
orcomd |
|- ( ( ( ( ( ( ( ( ph /\ A =/= B ) /\ q e. P ) /\ ( B L q ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ t e. P ) /\ ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( q I p ) ) ) ) /\ ( A .- p ) ( leG ` G ) ( B .- q ) ) -> ( A = B \/ t e. ( A L B ) ) ) |
| 47 |
46
|
ord |
|- ( ( ( ( ( ( ( ( ph /\ A =/= B ) /\ q e. P ) /\ ( B L q ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ t e. P ) /\ ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( q I p ) ) ) ) /\ ( A .- p ) ( leG ` G ) ( B .- q ) ) -> ( -. A = B -> t e. ( A L B ) ) ) |
| 48 |
43 47
|
mpd |
|- ( ( ( ( ( ( ( ( ph /\ A =/= B ) /\ q e. P ) /\ ( B L q ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ t e. P ) /\ ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( q I p ) ) ) ) /\ ( A .- p ) ( leG ` G ) ( B .- q ) ) -> t e. ( A L B ) ) |
| 49 |
44
|
simprd |
|- ( ( ( ( ( ( ( ( ph /\ A =/= B ) /\ q e. P ) /\ ( B L q ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ t e. P ) /\ ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( q I p ) ) ) ) /\ ( A .- p ) ( leG ` G ) ( B .- q ) ) -> t e. ( q I p ) ) |
| 50 |
|
simpr |
|- ( ( ( ( ( ( ( ( ph /\ A =/= B ) /\ q e. P ) /\ ( B L q ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ t e. P ) /\ ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( q I p ) ) ) ) /\ ( A .- p ) ( leG ` G ) ( B .- q ) ) -> ( A .- p ) ( leG ` G ) ( B .- q ) ) |
| 51 |
1 2 3 4 21 6 23 25 27 29 30 31 38 42 48 49 50
|
mideulem |
|- ( ( ( ( ( ( ( ( ph /\ A =/= B ) /\ q e. P ) /\ ( B L q ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ t e. P ) /\ ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( q I p ) ) ) ) /\ ( A .- p ) ( leG ` G ) ( B .- q ) ) -> E. x e. P B = ( ( S ` x ) ` A ) ) |
| 52 |
20
|
ad4antr |
|- ( ( ( ( ( ( ( ( ph /\ A =/= B ) /\ q e. P ) /\ ( B L q ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ t e. P ) /\ ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( q I p ) ) ) ) /\ ( B .- q ) ( leG ` G ) ( A .- p ) ) -> G e. TarskiG ) |
| 53 |
52
|
adantr |
|- ( ( ( ( ( ( ( ( ( ph /\ A =/= B ) /\ q e. P ) /\ ( B L q ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ t e. P ) /\ ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( q I p ) ) ) ) /\ ( B .- q ) ( leG ` G ) ( A .- p ) ) /\ ( x e. P /\ A = ( ( S ` x ) ` B ) ) ) -> G e. TarskiG ) |
| 54 |
|
simprl |
|- ( ( ( ( ( ( ( ( ( ph /\ A =/= B ) /\ q e. P ) /\ ( B L q ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ t e. P ) /\ ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( q I p ) ) ) ) /\ ( B .- q ) ( leG ` G ) ( A .- p ) ) /\ ( x e. P /\ A = ( ( S ` x ) ` B ) ) ) -> x e. P ) |
| 55 |
|
eqid |
|- ( S ` x ) = ( S ` x ) |
| 56 |
24
|
ad4antr |
|- ( ( ( ( ( ( ( ( ph /\ A =/= B ) /\ q e. P ) /\ ( B L q ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ t e. P ) /\ ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( q I p ) ) ) ) /\ ( B .- q ) ( leG ` G ) ( A .- p ) ) -> B e. P ) |
| 57 |
56
|
adantr |
|- ( ( ( ( ( ( ( ( ( ph /\ A =/= B ) /\ q e. P ) /\ ( B L q ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ t e. P ) /\ ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( q I p ) ) ) ) /\ ( B .- q ) ( leG ` G ) ( A .- p ) ) /\ ( x e. P /\ A = ( ( S ` x ) ` B ) ) ) -> B e. P ) |
| 58 |
|
simprr |
|- ( ( ( ( ( ( ( ( ( ph /\ A =/= B ) /\ q e. P ) /\ ( B L q ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ t e. P ) /\ ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( q I p ) ) ) ) /\ ( B .- q ) ( leG ` G ) ( A .- p ) ) /\ ( x e. P /\ A = ( ( S ` x ) ` B ) ) ) -> A = ( ( S ` x ) ` B ) ) |
| 59 |
58
|
eqcomd |
|- ( ( ( ( ( ( ( ( ( ph /\ A =/= B ) /\ q e. P ) /\ ( B L q ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ t e. P ) /\ ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( q I p ) ) ) ) /\ ( B .- q ) ( leG ` G ) ( A .- p ) ) /\ ( x e. P /\ A = ( ( S ` x ) ` B ) ) ) -> ( ( S ` x ) ` B ) = A ) |
| 60 |
1 2 3 4 6 53 54 55 57 59
|
mircom |
|- ( ( ( ( ( ( ( ( ( ph /\ A =/= B ) /\ q e. P ) /\ ( B L q ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ t e. P ) /\ ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( q I p ) ) ) ) /\ ( B .- q ) ( leG ` G ) ( A .- p ) ) /\ ( x e. P /\ A = ( ( S ` x ) ` B ) ) ) -> ( ( S ` x ) ` A ) = B ) |
| 61 |
60
|
eqcomd |
|- ( ( ( ( ( ( ( ( ( ph /\ A =/= B ) /\ q e. P ) /\ ( B L q ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ t e. P ) /\ ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( q I p ) ) ) ) /\ ( B .- q ) ( leG ` G ) ( A .- p ) ) /\ ( x e. P /\ A = ( ( S ` x ) ` B ) ) ) -> B = ( ( S ` x ) ` A ) ) |
| 62 |
22
|
ad4antr |
|- ( ( ( ( ( ( ( ( ph /\ A =/= B ) /\ q e. P ) /\ ( B L q ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ t e. P ) /\ ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( q I p ) ) ) ) /\ ( B .- q ) ( leG ` G ) ( A .- p ) ) -> A e. P ) |
| 63 |
26
|
ad4antr |
|- ( ( ( ( ( ( ( ( ph /\ A =/= B ) /\ q e. P ) /\ ( B L q ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ t e. P ) /\ ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( q I p ) ) ) ) /\ ( B .- q ) ( leG ` G ) ( A .- p ) ) -> A =/= B ) |
| 64 |
63
|
necomd |
|- ( ( ( ( ( ( ( ( ph /\ A =/= B ) /\ q e. P ) /\ ( B L q ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ t e. P ) /\ ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( q I p ) ) ) ) /\ ( B .- q ) ( leG ` G ) ( A .- p ) ) -> B =/= A ) |
| 65 |
|
simp-4r |
|- ( ( ( ( ( ( ( ( ph /\ A =/= B ) /\ q e. P ) /\ ( B L q ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ t e. P ) /\ ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( q I p ) ) ) ) /\ ( B .- q ) ( leG ` G ) ( A .- p ) ) -> p e. P ) |
| 66 |
28
|
ad4antr |
|- ( ( ( ( ( ( ( ( ph /\ A =/= B ) /\ q e. P ) /\ ( B L q ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ t e. P ) /\ ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( q I p ) ) ) ) /\ ( B .- q ) ( leG ` G ) ( A .- p ) ) -> q e. P ) |
| 67 |
|
simpllr |
|- ( ( ( ( ( ( ( ( ph /\ A =/= B ) /\ q e. P ) /\ ( B L q ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ t e. P ) /\ ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( q I p ) ) ) ) /\ ( B .- q ) ( leG ` G ) ( A .- p ) ) -> t e. P ) |
| 68 |
|
simplr |
|- ( ( ( ( ( ( ( ( ph /\ A =/= B ) /\ q e. P ) /\ ( B L q ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ t e. P ) /\ ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( q I p ) ) ) ) /\ ( B .- q ) ( leG ` G ) ( A .- p ) ) -> ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( q I p ) ) ) ) |
| 69 |
68
|
simpld |
|- ( ( ( ( ( ( ( ( ph /\ A =/= B ) /\ q e. P ) /\ ( B L q ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ t e. P ) /\ ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( q I p ) ) ) ) /\ ( B .- q ) ( leG ` G ) ( A .- p ) ) -> ( A L p ) ( perpG ` G ) ( A L B ) ) |
| 70 |
4 52 69
|
perpln1 |
|- ( ( ( ( ( ( ( ( ph /\ A =/= B ) /\ q e. P ) /\ ( B L q ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ t e. P ) /\ ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( q I p ) ) ) ) /\ ( B .- q ) ( leG ` G ) ( A .- p ) ) -> ( A L p ) e. ran L ) |
| 71 |
1 3 4 52 62 65 70
|
tglnne |
|- ( ( ( ( ( ( ( ( ph /\ A =/= B ) /\ q e. P ) /\ ( B L q ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ t e. P ) /\ ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( q I p ) ) ) ) /\ ( B .- q ) ( leG ` G ) ( A .- p ) ) -> A =/= p ) |
| 72 |
1 3 4 52 62 65 71
|
tglinecom |
|- ( ( ( ( ( ( ( ( ph /\ A =/= B ) /\ q e. P ) /\ ( B L q ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ t e. P ) /\ ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( q I p ) ) ) ) /\ ( B .- q ) ( leG ` G ) ( A .- p ) ) -> ( A L p ) = ( p L A ) ) |
| 73 |
72 70
|
eqeltrrd |
|- ( ( ( ( ( ( ( ( ph /\ A =/= B ) /\ q e. P ) /\ ( B L q ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ t e. P ) /\ ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( q I p ) ) ) ) /\ ( B .- q ) ( leG ` G ) ( A .- p ) ) -> ( p L A ) e. ran L ) |
| 74 |
1 3 4 52 56 62 64
|
tgelrnln |
|- ( ( ( ( ( ( ( ( ph /\ A =/= B ) /\ q e. P ) /\ ( B L q ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ t e. P ) /\ ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( q I p ) ) ) ) /\ ( B .- q ) ( leG ` G ) ( A .- p ) ) -> ( B L A ) e. ran L ) |
| 75 |
1 3 4 52 62 56 63
|
tglinecom |
|- ( ( ( ( ( ( ( ( ph /\ A =/= B ) /\ q e. P ) /\ ( B L q ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ t e. P ) /\ ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( q I p ) ) ) ) /\ ( B .- q ) ( leG ` G ) ( A .- p ) ) -> ( A L B ) = ( B L A ) ) |
| 76 |
69 72 75
|
3brtr3d |
|- ( ( ( ( ( ( ( ( ph /\ A =/= B ) /\ q e. P ) /\ ( B L q ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ t e. P ) /\ ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( q I p ) ) ) ) /\ ( B .- q ) ( leG ` G ) ( A .- p ) ) -> ( p L A ) ( perpG ` G ) ( B L A ) ) |
| 77 |
1 2 3 4 52 73 74 76
|
perpcom |
|- ( ( ( ( ( ( ( ( ph /\ A =/= B ) /\ q e. P ) /\ ( B L q ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ t e. P ) /\ ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( q I p ) ) ) ) /\ ( B .- q ) ( leG ` G ) ( A .- p ) ) -> ( B L A ) ( perpG ` G ) ( p L A ) ) |
| 78 |
|
simp-5r |
|- ( ( ( ( ( ( ( ( ph /\ A =/= B ) /\ q e. P ) /\ ( B L q ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ t e. P ) /\ ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( q I p ) ) ) ) /\ ( B .- q ) ( leG ` G ) ( A .- p ) ) -> ( B L q ) ( perpG ` G ) ( A L B ) ) |
| 79 |
4 52 78
|
perpln1 |
|- ( ( ( ( ( ( ( ( ph /\ A =/= B ) /\ q e. P ) /\ ( B L q ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ t e. P ) /\ ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( q I p ) ) ) ) /\ ( B .- q ) ( leG ` G ) ( A .- p ) ) -> ( B L q ) e. ran L ) |
| 80 |
78 75
|
breqtrd |
|- ( ( ( ( ( ( ( ( ph /\ A =/= B ) /\ q e. P ) /\ ( B L q ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ t e. P ) /\ ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( q I p ) ) ) ) /\ ( B .- q ) ( leG ` G ) ( A .- p ) ) -> ( B L q ) ( perpG ` G ) ( B L A ) ) |
| 81 |
1 2 3 4 52 79 74 80
|
perpcom |
|- ( ( ( ( ( ( ( ( ph /\ A =/= B ) /\ q e. P ) /\ ( B L q ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ t e. P ) /\ ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( q I p ) ) ) ) /\ ( B .- q ) ( leG ` G ) ( A .- p ) ) -> ( B L A ) ( perpG ` G ) ( B L q ) ) |
| 82 |
63
|
neneqd |
|- ( ( ( ( ( ( ( ( ph /\ A =/= B ) /\ q e. P ) /\ ( B L q ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ t e. P ) /\ ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( q I p ) ) ) ) /\ ( B .- q ) ( leG ` G ) ( A .- p ) ) -> -. A = B ) |
| 83 |
68
|
simprd |
|- ( ( ( ( ( ( ( ( ph /\ A =/= B ) /\ q e. P ) /\ ( B L q ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ t e. P ) /\ ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( q I p ) ) ) ) /\ ( B .- q ) ( leG ` G ) ( A .- p ) ) -> ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( q I p ) ) ) |
| 84 |
83
|
simpld |
|- ( ( ( ( ( ( ( ( ph /\ A =/= B ) /\ q e. P ) /\ ( B L q ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ t e. P ) /\ ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( q I p ) ) ) ) /\ ( B .- q ) ( leG ` G ) ( A .- p ) ) -> ( t e. ( A L B ) \/ A = B ) ) |
| 85 |
84
|
orcomd |
|- ( ( ( ( ( ( ( ( ph /\ A =/= B ) /\ q e. P ) /\ ( B L q ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ t e. P ) /\ ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( q I p ) ) ) ) /\ ( B .- q ) ( leG ` G ) ( A .- p ) ) -> ( A = B \/ t e. ( A L B ) ) ) |
| 86 |
85
|
ord |
|- ( ( ( ( ( ( ( ( ph /\ A =/= B ) /\ q e. P ) /\ ( B L q ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ t e. P ) /\ ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( q I p ) ) ) ) /\ ( B .- q ) ( leG ` G ) ( A .- p ) ) -> ( -. A = B -> t e. ( A L B ) ) ) |
| 87 |
82 86
|
mpd |
|- ( ( ( ( ( ( ( ( ph /\ A =/= B ) /\ q e. P ) /\ ( B L q ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ t e. P ) /\ ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( q I p ) ) ) ) /\ ( B .- q ) ( leG ` G ) ( A .- p ) ) -> t e. ( A L B ) ) |
| 88 |
87 75
|
eleqtrd |
|- ( ( ( ( ( ( ( ( ph /\ A =/= B ) /\ q e. P ) /\ ( B L q ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ t e. P ) /\ ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( q I p ) ) ) ) /\ ( B .- q ) ( leG ` G ) ( A .- p ) ) -> t e. ( B L A ) ) |
| 89 |
83
|
simprd |
|- ( ( ( ( ( ( ( ( ph /\ A =/= B ) /\ q e. P ) /\ ( B L q ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ t e. P ) /\ ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( q I p ) ) ) ) /\ ( B .- q ) ( leG ` G ) ( A .- p ) ) -> t e. ( q I p ) ) |
| 90 |
1 2 3 52 66 67 65 89
|
tgbtwncom |
|- ( ( ( ( ( ( ( ( ph /\ A =/= B ) /\ q e. P ) /\ ( B L q ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ t e. P ) /\ ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( q I p ) ) ) ) /\ ( B .- q ) ( leG ` G ) ( A .- p ) ) -> t e. ( p I q ) ) |
| 91 |
|
simpr |
|- ( ( ( ( ( ( ( ( ph /\ A =/= B ) /\ q e. P ) /\ ( B L q ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ t e. P ) /\ ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( q I p ) ) ) ) /\ ( B .- q ) ( leG ` G ) ( A .- p ) ) -> ( B .- q ) ( leG ` G ) ( A .- p ) ) |
| 92 |
1 2 3 4 52 6 56 62 64 65 66 67 77 81 88 90 91
|
mideulem |
|- ( ( ( ( ( ( ( ( ph /\ A =/= B ) /\ q e. P ) /\ ( B L q ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ t e. P ) /\ ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( q I p ) ) ) ) /\ ( B .- q ) ( leG ` G ) ( A .- p ) ) -> E. x e. P A = ( ( S ` x ) ` B ) ) |
| 93 |
61 92
|
reximddv |
|- ( ( ( ( ( ( ( ( ph /\ A =/= B ) /\ q e. P ) /\ ( B L q ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ t e. P ) /\ ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( q I p ) ) ) ) /\ ( B .- q ) ( leG ` G ) ( A .- p ) ) -> E. x e. P B = ( ( S ` x ) ` A ) ) |
| 94 |
|
eqid |
|- ( leG ` G ) = ( leG ` G ) |
| 95 |
20
|
ad3antrrr |
|- ( ( ( ( ( ( ( ph /\ A =/= B ) /\ q e. P ) /\ ( B L q ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ t e. P ) /\ ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( q I p ) ) ) ) -> G e. TarskiG ) |
| 96 |
22
|
ad3antrrr |
|- ( ( ( ( ( ( ( ph /\ A =/= B ) /\ q e. P ) /\ ( B L q ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ t e. P ) /\ ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( q I p ) ) ) ) -> A e. P ) |
| 97 |
|
simpllr |
|- ( ( ( ( ( ( ( ph /\ A =/= B ) /\ q e. P ) /\ ( B L q ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ t e. P ) /\ ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( q I p ) ) ) ) -> p e. P ) |
| 98 |
24
|
ad3antrrr |
|- ( ( ( ( ( ( ( ph /\ A =/= B ) /\ q e. P ) /\ ( B L q ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ t e. P ) /\ ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( q I p ) ) ) ) -> B e. P ) |
| 99 |
|
simp-5r |
|- ( ( ( ( ( ( ( ph /\ A =/= B ) /\ q e. P ) /\ ( B L q ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ t e. P ) /\ ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( q I p ) ) ) ) -> q e. P ) |
| 100 |
1 2 3 94 95 96 97 98 99
|
legtrid |
|- ( ( ( ( ( ( ( ph /\ A =/= B ) /\ q e. P ) /\ ( B L q ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ t e. P ) /\ ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( q I p ) ) ) ) -> ( ( A .- p ) ( leG ` G ) ( B .- q ) \/ ( B .- q ) ( leG ` G ) ( A .- p ) ) ) |
| 101 |
51 93 100
|
mpjaodan |
|- ( ( ( ( ( ( ( ph /\ A =/= B ) /\ q e. P ) /\ ( B L q ) ( perpG ` G ) ( A L B ) ) /\ p e. P ) /\ t e. P ) /\ ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( q I p ) ) ) ) -> E. x e. P B = ( ( S ` x ) ` A ) ) |
| 102 |
9
|
ad3antrrr |
|- ( ( ( ( ph /\ A =/= B ) /\ q e. P ) /\ ( B L q ) ( perpG ` G ) ( A L B ) ) -> G TarskiGDim>= 2 ) |
| 103 |
1 2 3 4 20 22 24 28 26 102
|
colperpex |
|- ( ( ( ( ph /\ A =/= B ) /\ q e. P ) /\ ( B L q ) ( perpG ` G ) ( A L B ) ) -> E. p e. P ( ( A L p ) ( perpG ` G ) ( A L B ) /\ E. t e. P ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( q I p ) ) ) ) |
| 104 |
|
r19.42v |
|- ( E. t e. P ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( q I p ) ) ) <-> ( ( A L p ) ( perpG ` G ) ( A L B ) /\ E. t e. P ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( q I p ) ) ) ) |
| 105 |
104
|
rexbii |
|- ( E. p e. P E. t e. P ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( q I p ) ) ) <-> E. p e. P ( ( A L p ) ( perpG ` G ) ( A L B ) /\ E. t e. P ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( q I p ) ) ) ) |
| 106 |
103 105
|
sylibr |
|- ( ( ( ( ph /\ A =/= B ) /\ q e. P ) /\ ( B L q ) ( perpG ` G ) ( A L B ) ) -> E. p e. P E. t e. P ( ( A L p ) ( perpG ` G ) ( A L B ) /\ ( ( t e. ( A L B ) \/ A = B ) /\ t e. ( q I p ) ) ) ) |
| 107 |
101 106
|
r19.29vva |
|- ( ( ( ( ph /\ A =/= B ) /\ q e. P ) /\ ( B L q ) ( perpG ` G ) ( A L B ) ) -> E. x e. P B = ( ( S ` x ) ` A ) ) |
| 108 |
5
|
adantr |
|- ( ( ph /\ A =/= B ) -> G e. TarskiG ) |
| 109 |
8
|
adantr |
|- ( ( ph /\ A =/= B ) -> B e. P ) |
| 110 |
7
|
adantr |
|- ( ( ph /\ A =/= B ) -> A e. P ) |
| 111 |
|
simpr |
|- ( ( ph /\ A =/= B ) -> A =/= B ) |
| 112 |
111
|
necomd |
|- ( ( ph /\ A =/= B ) -> B =/= A ) |
| 113 |
9
|
adantr |
|- ( ( ph /\ A =/= B ) -> G TarskiGDim>= 2 ) |
| 114 |
1 2 3 4 108 109 110 110 112 113
|
colperpex |
|- ( ( ph /\ A =/= B ) -> E. q e. P ( ( B L q ) ( perpG ` G ) ( B L A ) /\ E. s e. P ( ( s e. ( B L A ) \/ B = A ) /\ s e. ( A I q ) ) ) ) |
| 115 |
|
simprl |
|- ( ( ( ph /\ A =/= B ) /\ ( ( B L q ) ( perpG ` G ) ( B L A ) /\ E. s e. P ( ( s e. ( B L A ) \/ B = A ) /\ s e. ( A I q ) ) ) ) -> ( B L q ) ( perpG ` G ) ( B L A ) ) |
| 116 |
1 3 4 108 110 109 111
|
tglinecom |
|- ( ( ph /\ A =/= B ) -> ( A L B ) = ( B L A ) ) |
| 117 |
116
|
adantr |
|- ( ( ( ph /\ A =/= B ) /\ ( ( B L q ) ( perpG ` G ) ( B L A ) /\ E. s e. P ( ( s e. ( B L A ) \/ B = A ) /\ s e. ( A I q ) ) ) ) -> ( A L B ) = ( B L A ) ) |
| 118 |
115 117
|
breqtrrd |
|- ( ( ( ph /\ A =/= B ) /\ ( ( B L q ) ( perpG ` G ) ( B L A ) /\ E. s e. P ( ( s e. ( B L A ) \/ B = A ) /\ s e. ( A I q ) ) ) ) -> ( B L q ) ( perpG ` G ) ( A L B ) ) |
| 119 |
118
|
ex |
|- ( ( ph /\ A =/= B ) -> ( ( ( B L q ) ( perpG ` G ) ( B L A ) /\ E. s e. P ( ( s e. ( B L A ) \/ B = A ) /\ s e. ( A I q ) ) ) -> ( B L q ) ( perpG ` G ) ( A L B ) ) ) |
| 120 |
119
|
reximdv |
|- ( ( ph /\ A =/= B ) -> ( E. q e. P ( ( B L q ) ( perpG ` G ) ( B L A ) /\ E. s e. P ( ( s e. ( B L A ) \/ B = A ) /\ s e. ( A I q ) ) ) -> E. q e. P ( B L q ) ( perpG ` G ) ( A L B ) ) ) |
| 121 |
114 120
|
mpd |
|- ( ( ph /\ A =/= B ) -> E. q e. P ( B L q ) ( perpG ` G ) ( A L B ) ) |
| 122 |
107 121
|
r19.29a |
|- ( ( ph /\ A =/= B ) -> E. x e. P B = ( ( S ` x ) ` A ) ) |
| 123 |
19 122
|
pm2.61dane |
|- ( ph -> E. x e. P B = ( ( S ` x ) ` A ) ) |