Step |
Hyp |
Ref |
Expression |
1 |
|
ismid.p |
|- P = ( Base ` G ) |
2 |
|
ismid.d |
|- .- = ( dist ` G ) |
3 |
|
ismid.i |
|- I = ( Itv ` G ) |
4 |
|
ismid.g |
|- ( ph -> G e. TarskiG ) |
5 |
|
ismid.1 |
|- ( ph -> G TarskiGDim>= 2 ) |
6 |
|
eqid |
|- ( LineG ` G ) = ( LineG ` G ) |
7 |
4
|
adantr |
|- ( ( ph /\ ( a e. P /\ b e. P ) ) -> G e. TarskiG ) |
8 |
|
eqid |
|- ( pInvG ` G ) = ( pInvG ` G ) |
9 |
|
simprl |
|- ( ( ph /\ ( a e. P /\ b e. P ) ) -> a e. P ) |
10 |
|
simprr |
|- ( ( ph /\ ( a e. P /\ b e. P ) ) -> b e. P ) |
11 |
5
|
adantr |
|- ( ( ph /\ ( a e. P /\ b e. P ) ) -> G TarskiGDim>= 2 ) |
12 |
1 2 3 6 7 8 9 10 11
|
mideu |
|- ( ( ph /\ ( a e. P /\ b e. P ) ) -> E! m e. P b = ( ( ( pInvG ` G ) ` m ) ` a ) ) |
13 |
12
|
ralrimivva |
|- ( ph -> A. a e. P A. b e. P E! m e. P b = ( ( ( pInvG ` G ) ` m ) ` a ) ) |
14 |
|
riotacl |
|- ( E! m e. P b = ( ( ( pInvG ` G ) ` m ) ` a ) -> ( iota_ m e. P b = ( ( ( pInvG ` G ) ` m ) ` a ) ) e. P ) |
15 |
14
|
2ralimi |
|- ( A. a e. P A. b e. P E! m e. P b = ( ( ( pInvG ` G ) ` m ) ` a ) -> A. a e. P A. b e. P ( iota_ m e. P b = ( ( ( pInvG ` G ) ` m ) ` a ) ) e. P ) |
16 |
13 15
|
syl |
|- ( ph -> A. a e. P A. b e. P ( iota_ m e. P b = ( ( ( pInvG ` G ) ` m ) ` a ) ) e. P ) |
17 |
|
eqid |
|- ( a e. P , b e. P |-> ( iota_ m e. P b = ( ( ( pInvG ` G ) ` m ) ` a ) ) ) = ( a e. P , b e. P |-> ( iota_ m e. P b = ( ( ( pInvG ` G ) ` m ) ` a ) ) ) |
18 |
17
|
fmpo |
|- ( A. a e. P A. b e. P ( iota_ m e. P b = ( ( ( pInvG ` G ) ` m ) ` a ) ) e. P <-> ( a e. P , b e. P |-> ( iota_ m e. P b = ( ( ( pInvG ` G ) ` m ) ` a ) ) ) : ( P X. P ) --> P ) |
19 |
16 18
|
sylib |
|- ( ph -> ( a e. P , b e. P |-> ( iota_ m e. P b = ( ( ( pInvG ` G ) ` m ) ` a ) ) ) : ( P X. P ) --> P ) |
20 |
|
df-mid |
|- midG = ( g e. _V |-> ( a e. ( Base ` g ) , b e. ( Base ` g ) |-> ( iota_ m e. ( Base ` g ) b = ( ( ( pInvG ` g ) ` m ) ` a ) ) ) ) |
21 |
|
fveq2 |
|- ( g = G -> ( Base ` g ) = ( Base ` G ) ) |
22 |
21 1
|
eqtr4di |
|- ( g = G -> ( Base ` g ) = P ) |
23 |
|
fveq2 |
|- ( g = G -> ( pInvG ` g ) = ( pInvG ` G ) ) |
24 |
23
|
fveq1d |
|- ( g = G -> ( ( pInvG ` g ) ` m ) = ( ( pInvG ` G ) ` m ) ) |
25 |
24
|
fveq1d |
|- ( g = G -> ( ( ( pInvG ` g ) ` m ) ` a ) = ( ( ( pInvG ` G ) ` m ) ` a ) ) |
26 |
25
|
eqeq2d |
|- ( g = G -> ( b = ( ( ( pInvG ` g ) ` m ) ` a ) <-> b = ( ( ( pInvG ` G ) ` m ) ` a ) ) ) |
27 |
22 26
|
riotaeqbidv |
|- ( g = G -> ( iota_ m e. ( Base ` g ) b = ( ( ( pInvG ` g ) ` m ) ` a ) ) = ( iota_ m e. P b = ( ( ( pInvG ` G ) ` m ) ` a ) ) ) |
28 |
22 22 27
|
mpoeq123dv |
|- ( g = G -> ( a e. ( Base ` g ) , b e. ( Base ` g ) |-> ( iota_ m e. ( Base ` g ) b = ( ( ( pInvG ` g ) ` m ) ` a ) ) ) = ( a e. P , b e. P |-> ( iota_ m e. P b = ( ( ( pInvG ` G ) ` m ) ` a ) ) ) ) |
29 |
4
|
elexd |
|- ( ph -> G e. _V ) |
30 |
1
|
fvexi |
|- P e. _V |
31 |
30 30
|
mpoex |
|- ( a e. P , b e. P |-> ( iota_ m e. P b = ( ( ( pInvG ` G ) ` m ) ` a ) ) ) e. _V |
32 |
31
|
a1i |
|- ( ph -> ( a e. P , b e. P |-> ( iota_ m e. P b = ( ( ( pInvG ` G ) ` m ) ` a ) ) ) e. _V ) |
33 |
20 28 29 32
|
fvmptd3 |
|- ( ph -> ( midG ` G ) = ( a e. P , b e. P |-> ( iota_ m e. P b = ( ( ( pInvG ` G ) ` m ) ` a ) ) ) ) |
34 |
33
|
feq1d |
|- ( ph -> ( ( midG ` G ) : ( P X. P ) --> P <-> ( a e. P , b e. P |-> ( iota_ m e. P b = ( ( ( pInvG ` G ) ` m ) ` a ) ) ) : ( P X. P ) --> P ) ) |
35 |
19 34
|
mpbird |
|- ( ph -> ( midG ` G ) : ( P X. P ) --> P ) |