| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mirval.p |
|- P = ( Base ` G ) |
| 2 |
|
mirval.d |
|- .- = ( dist ` G ) |
| 3 |
|
mirval.i |
|- I = ( Itv ` G ) |
| 4 |
|
mirval.l |
|- L = ( LineG ` G ) |
| 5 |
|
mirval.s |
|- S = ( pInvG ` G ) |
| 6 |
|
mirval.g |
|- ( ph -> G e. TarskiG ) |
| 7 |
|
miduniq.a |
|- ( ph -> A e. P ) |
| 8 |
|
miduniq.b |
|- ( ph -> B e. P ) |
| 9 |
|
miduniq.x |
|- ( ph -> X e. P ) |
| 10 |
|
miduniq.y |
|- ( ph -> Y e. P ) |
| 11 |
|
miduniq.e |
|- ( ph -> ( ( S ` A ) ` X ) = Y ) |
| 12 |
|
miduniq.f |
|- ( ph -> ( ( S ` B ) ` X ) = Y ) |
| 13 |
|
eqid |
|- ( cgrG ` G ) = ( cgrG ` G ) |
| 14 |
|
eqid |
|- ( S ` A ) = ( S ` A ) |
| 15 |
1 2 3 4 5 6 7 14 8
|
mircl |
|- ( ph -> ( ( S ` A ) ` B ) e. P ) |
| 16 |
|
eqid |
|- ( S ` B ) = ( S ` B ) |
| 17 |
1 2 3 4 5 6 8 16 9
|
mirbtwn |
|- ( ph -> B e. ( ( ( S ` B ) ` X ) I X ) ) |
| 18 |
12
|
oveq1d |
|- ( ph -> ( ( ( S ` B ) ` X ) I X ) = ( Y I X ) ) |
| 19 |
17 18
|
eleqtrd |
|- ( ph -> B e. ( Y I X ) ) |
| 20 |
1 2 3 6 10 8 9 19
|
tgbtwncom |
|- ( ph -> B e. ( X I Y ) ) |
| 21 |
1 2 3 4 5 6 7 14 10 8
|
miriso |
|- ( ph -> ( ( ( S ` A ) ` Y ) .- ( ( S ` A ) ` B ) ) = ( Y .- B ) ) |
| 22 |
1 2 3 4 5 6 7 14 9 11
|
mircom |
|- ( ph -> ( ( S ` A ) ` Y ) = X ) |
| 23 |
22
|
oveq1d |
|- ( ph -> ( ( ( S ` A ) ` Y ) .- ( ( S ` A ) ` B ) ) = ( X .- ( ( S ` A ) ` B ) ) ) |
| 24 |
1 2 3 4 5 6 8 16 9
|
mircgr |
|- ( ph -> ( B .- ( ( S ` B ) ` X ) ) = ( B .- X ) ) |
| 25 |
12
|
oveq2d |
|- ( ph -> ( B .- ( ( S ` B ) ` X ) ) = ( B .- Y ) ) |
| 26 |
24 25
|
eqtr3d |
|- ( ph -> ( B .- X ) = ( B .- Y ) ) |
| 27 |
26
|
eqcomd |
|- ( ph -> ( B .- Y ) = ( B .- X ) ) |
| 28 |
1 2 3 6 8 10 8 9 27
|
tgcgrcomlr |
|- ( ph -> ( Y .- B ) = ( X .- B ) ) |
| 29 |
21 23 28
|
3eqtr3rd |
|- ( ph -> ( X .- B ) = ( X .- ( ( S ` A ) ` B ) ) ) |
| 30 |
1 2 3 4 5 6 7 14 9 8
|
miriso |
|- ( ph -> ( ( ( S ` A ) ` X ) .- ( ( S ` A ) ` B ) ) = ( X .- B ) ) |
| 31 |
11
|
oveq1d |
|- ( ph -> ( ( ( S ` A ) ` X ) .- ( ( S ` A ) ` B ) ) = ( Y .- ( ( S ` A ) ` B ) ) ) |
| 32 |
1 2 3 6 8 9 8 10 26
|
tgcgrcomlr |
|- ( ph -> ( X .- B ) = ( Y .- B ) ) |
| 33 |
30 31 32
|
3eqtr3rd |
|- ( ph -> ( Y .- B ) = ( Y .- ( ( S ` A ) ` B ) ) ) |
| 34 |
1 4 3 6 9 10 8 13 15 7 2 20 29 33
|
tgidinside |
|- ( ph -> B = ( ( S ` A ) ` B ) ) |
| 35 |
34
|
eqcomd |
|- ( ph -> ( ( S ` A ) ` B ) = B ) |
| 36 |
1 2 3 4 5 6 7 14 8
|
mirinv |
|- ( ph -> ( ( ( S ` A ) ` B ) = B <-> A = B ) ) |
| 37 |
35 36
|
mpbid |
|- ( ph -> A = B ) |