Metamath Proof Explorer


Theorem miduniq1

Description: Uniqueness of the middle point, expressed with point inversion. Theorem 7.18 of Schwabhauser p. 52. (Contributed by Thierry Arnoux, 30-Jul-2019)

Ref Expression
Hypotheses mirval.p
|- P = ( Base ` G )
mirval.d
|- .- = ( dist ` G )
mirval.i
|- I = ( Itv ` G )
mirval.l
|- L = ( LineG ` G )
mirval.s
|- S = ( pInvG ` G )
mirval.g
|- ( ph -> G e. TarskiG )
miduniq1.a
|- ( ph -> A e. P )
miduniq1.b
|- ( ph -> B e. P )
miduniq1.x
|- ( ph -> X e. P )
miduniq1.e
|- ( ph -> ( ( S ` A ) ` X ) = ( ( S ` B ) ` X ) )
Assertion miduniq1
|- ( ph -> A = B )

Proof

Step Hyp Ref Expression
1 mirval.p
 |-  P = ( Base ` G )
2 mirval.d
 |-  .- = ( dist ` G )
3 mirval.i
 |-  I = ( Itv ` G )
4 mirval.l
 |-  L = ( LineG ` G )
5 mirval.s
 |-  S = ( pInvG ` G )
6 mirval.g
 |-  ( ph -> G e. TarskiG )
7 miduniq1.a
 |-  ( ph -> A e. P )
8 miduniq1.b
 |-  ( ph -> B e. P )
9 miduniq1.x
 |-  ( ph -> X e. P )
10 miduniq1.e
 |-  ( ph -> ( ( S ` A ) ` X ) = ( ( S ` B ) ` X ) )
11 eqid
 |-  ( S ` A ) = ( S ` A )
12 1 2 3 4 5 6 7 11 9 mircl
 |-  ( ph -> ( ( S ` A ) ` X ) e. P )
13 eqidd
 |-  ( ph -> ( ( S ` A ) ` X ) = ( ( S ` A ) ` X ) )
14 10 eqcomd
 |-  ( ph -> ( ( S ` B ) ` X ) = ( ( S ` A ) ` X ) )
15 1 2 3 4 5 6 7 8 9 12 13 14 miduniq
 |-  ( ph -> A = B )