Description: Uniqueness of the middle point, expressed with point inversion. Theorem 7.18 of Schwabhauser p. 52. (Contributed by Thierry Arnoux, 30-Jul-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mirval.p | |- P = ( Base ` G ) |
|
mirval.d | |- .- = ( dist ` G ) |
||
mirval.i | |- I = ( Itv ` G ) |
||
mirval.l | |- L = ( LineG ` G ) |
||
mirval.s | |- S = ( pInvG ` G ) |
||
mirval.g | |- ( ph -> G e. TarskiG ) |
||
miduniq1.a | |- ( ph -> A e. P ) |
||
miduniq1.b | |- ( ph -> B e. P ) |
||
miduniq1.x | |- ( ph -> X e. P ) |
||
miduniq1.e | |- ( ph -> ( ( S ` A ) ` X ) = ( ( S ` B ) ` X ) ) |
||
Assertion | miduniq1 | |- ( ph -> A = B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mirval.p | |- P = ( Base ` G ) |
|
2 | mirval.d | |- .- = ( dist ` G ) |
|
3 | mirval.i | |- I = ( Itv ` G ) |
|
4 | mirval.l | |- L = ( LineG ` G ) |
|
5 | mirval.s | |- S = ( pInvG ` G ) |
|
6 | mirval.g | |- ( ph -> G e. TarskiG ) |
|
7 | miduniq1.a | |- ( ph -> A e. P ) |
|
8 | miduniq1.b | |- ( ph -> B e. P ) |
|
9 | miduniq1.x | |- ( ph -> X e. P ) |
|
10 | miduniq1.e | |- ( ph -> ( ( S ` A ) ` X ) = ( ( S ` B ) ` X ) ) |
|
11 | eqid | |- ( S ` A ) = ( S ` A ) |
|
12 | 1 2 3 4 5 6 7 11 9 | mircl | |- ( ph -> ( ( S ` A ) ` X ) e. P ) |
13 | eqidd | |- ( ph -> ( ( S ` A ) ` X ) = ( ( S ` A ) ` X ) ) |
|
14 | 10 | eqcomd | |- ( ph -> ( ( S ` B ) ` X ) = ( ( S ` A ) ` X ) ) |
15 | 1 2 3 4 5 6 7 8 9 12 13 14 | miduniq | |- ( ph -> A = B ) |