Step |
Hyp |
Ref |
Expression |
1 |
|
elwwlks2s3.v |
|- V = ( Vtx ` G ) |
2 |
1
|
elwwlks2s3 |
|- ( W e. ( 2 WWalksN G ) -> E. a e. V E. b e. V E. c e. V W = <" a b c "> ) |
3 |
|
fveq1 |
|- ( W = <" a b c "> -> ( W ` 1 ) = ( <" a b c "> ` 1 ) ) |
4 |
|
s3fv1 |
|- ( b e. V -> ( <" a b c "> ` 1 ) = b ) |
5 |
3 4
|
sylan9eqr |
|- ( ( b e. V /\ W = <" a b c "> ) -> ( W ` 1 ) = b ) |
6 |
5
|
ex |
|- ( b e. V -> ( W = <" a b c "> -> ( W ` 1 ) = b ) ) |
7 |
6
|
adantl |
|- ( ( a e. V /\ b e. V ) -> ( W = <" a b c "> -> ( W ` 1 ) = b ) ) |
8 |
7
|
rexlimdvw |
|- ( ( a e. V /\ b e. V ) -> ( E. c e. V W = <" a b c "> -> ( W ` 1 ) = b ) ) |
9 |
8
|
reximdva |
|- ( a e. V -> ( E. b e. V E. c e. V W = <" a b c "> -> E. b e. V ( W ` 1 ) = b ) ) |
10 |
9
|
rexlimiv |
|- ( E. a e. V E. b e. V E. c e. V W = <" a b c "> -> E. b e. V ( W ` 1 ) = b ) |
11 |
2 10
|
syl |
|- ( W e. ( 2 WWalksN G ) -> E. b e. V ( W ` 1 ) = b ) |