Metamath Proof Explorer


Theorem min2

Description: The minimum of two numbers is less than or equal to the second. (Contributed by NM, 3-Aug-2007)

Ref Expression
Assertion min2
|- ( ( A e. RR /\ B e. RR ) -> if ( A <_ B , A , B ) <_ B )

Proof

Step Hyp Ref Expression
1 rexr
 |-  ( A e. RR -> A e. RR* )
2 rexr
 |-  ( B e. RR -> B e. RR* )
3 xrmin2
 |-  ( ( A e. RR* /\ B e. RR* ) -> if ( A <_ B , A , B ) <_ B )
4 1 2 3 syl2an
 |-  ( ( A e. RR /\ B e. RR ) -> if ( A <_ B , A , B ) <_ B )