Description: The minimum of two numbers is less than or equal to the second. (Contributed by NM, 3-Aug-2007)
Ref | Expression | ||
---|---|---|---|
Assertion | min2 | |- ( ( A e. RR /\ B e. RR ) -> if ( A <_ B , A , B ) <_ B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexr | |- ( A e. RR -> A e. RR* ) |
|
2 | rexr | |- ( B e. RR -> B e. RR* ) |
|
3 | xrmin2 | |- ( ( A e. RR* /\ B e. RR* ) -> if ( A <_ B , A , B ) <_ B ) |
|
4 | 1 2 3 | syl2an | |- ( ( A e. RR /\ B e. RR ) -> if ( A <_ B , A , B ) <_ B ) |