Step |
Hyp |
Ref |
Expression |
1 |
|
minmar1marrep.a |
|- A = ( N Mat R ) |
2 |
|
minmar1marrep.b |
|- B = ( Base ` A ) |
3 |
|
minmar1marrep.o |
|- .1. = ( 1r ` R ) |
4 |
|
eqid |
|- ( N minMatR1 R ) = ( N minMatR1 R ) |
5 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
6 |
1 2 4 3 5
|
minmar1val0 |
|- ( M e. B -> ( ( N minMatR1 R ) ` M ) = ( k e. N , l e. N |-> ( i e. N , j e. N |-> if ( i = k , if ( j = l , .1. , ( 0g ` R ) ) , ( i M j ) ) ) ) ) |
7 |
6
|
adantl |
|- ( ( R e. Ring /\ M e. B ) -> ( ( N minMatR1 R ) ` M ) = ( k e. N , l e. N |-> ( i e. N , j e. N |-> if ( i = k , if ( j = l , .1. , ( 0g ` R ) ) , ( i M j ) ) ) ) ) |
8 |
|
simpr |
|- ( ( R e. Ring /\ M e. B ) -> M e. B ) |
9 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
10 |
9 3
|
ringidcl |
|- ( R e. Ring -> .1. e. ( Base ` R ) ) |
11 |
10
|
adantr |
|- ( ( R e. Ring /\ M e. B ) -> .1. e. ( Base ` R ) ) |
12 |
|
eqid |
|- ( N matRRep R ) = ( N matRRep R ) |
13 |
1 2 12 5
|
marrepval0 |
|- ( ( M e. B /\ .1. e. ( Base ` R ) ) -> ( M ( N matRRep R ) .1. ) = ( k e. N , l e. N |-> ( i e. N , j e. N |-> if ( i = k , if ( j = l , .1. , ( 0g ` R ) ) , ( i M j ) ) ) ) ) |
14 |
8 11 13
|
syl2anc |
|- ( ( R e. Ring /\ M e. B ) -> ( M ( N matRRep R ) .1. ) = ( k e. N , l e. N |-> ( i e. N , j e. N |-> if ( i = k , if ( j = l , .1. , ( 0g ` R ) ) , ( i M j ) ) ) ) ) |
15 |
7 14
|
eqtr4d |
|- ( ( R e. Ring /\ M e. B ) -> ( ( N minMatR1 R ) ` M ) = ( M ( N matRRep R ) .1. ) ) |