Step |
Hyp |
Ref |
Expression |
1 |
|
minmar1fval.a |
|- A = ( N Mat R ) |
2 |
|
minmar1fval.b |
|- B = ( Base ` A ) |
3 |
|
minmar1fval.q |
|- Q = ( N minMatR1 R ) |
4 |
|
minmar1fval.o |
|- .1. = ( 1r ` R ) |
5 |
|
minmar1fval.z |
|- .0. = ( 0g ` R ) |
6 |
1 2 3 4 5
|
minmar1val0 |
|- ( M e. B -> ( Q ` M ) = ( k e. N , l e. N |-> ( i e. N , j e. N |-> if ( i = k , if ( j = l , .1. , .0. ) , ( i M j ) ) ) ) ) |
7 |
6
|
3ad2ant1 |
|- ( ( M e. B /\ K e. N /\ L e. N ) -> ( Q ` M ) = ( k e. N , l e. N |-> ( i e. N , j e. N |-> if ( i = k , if ( j = l , .1. , .0. ) , ( i M j ) ) ) ) ) |
8 |
|
simp2 |
|- ( ( M e. B /\ K e. N /\ L e. N ) -> K e. N ) |
9 |
|
simpl3 |
|- ( ( ( M e. B /\ K e. N /\ L e. N ) /\ k = K ) -> L e. N ) |
10 |
1 2
|
matrcl |
|- ( M e. B -> ( N e. Fin /\ R e. _V ) ) |
11 |
10
|
simpld |
|- ( M e. B -> N e. Fin ) |
12 |
11 11
|
jca |
|- ( M e. B -> ( N e. Fin /\ N e. Fin ) ) |
13 |
12
|
3ad2ant1 |
|- ( ( M e. B /\ K e. N /\ L e. N ) -> ( N e. Fin /\ N e. Fin ) ) |
14 |
13
|
adantr |
|- ( ( ( M e. B /\ K e. N /\ L e. N ) /\ ( k = K /\ l = L ) ) -> ( N e. Fin /\ N e. Fin ) ) |
15 |
|
mpoexga |
|- ( ( N e. Fin /\ N e. Fin ) -> ( i e. N , j e. N |-> if ( i = k , if ( j = l , .1. , .0. ) , ( i M j ) ) ) e. _V ) |
16 |
14 15
|
syl |
|- ( ( ( M e. B /\ K e. N /\ L e. N ) /\ ( k = K /\ l = L ) ) -> ( i e. N , j e. N |-> if ( i = k , if ( j = l , .1. , .0. ) , ( i M j ) ) ) e. _V ) |
17 |
|
eqeq2 |
|- ( k = K -> ( i = k <-> i = K ) ) |
18 |
17
|
adantr |
|- ( ( k = K /\ l = L ) -> ( i = k <-> i = K ) ) |
19 |
|
eqeq2 |
|- ( l = L -> ( j = l <-> j = L ) ) |
20 |
19
|
ifbid |
|- ( l = L -> if ( j = l , .1. , .0. ) = if ( j = L , .1. , .0. ) ) |
21 |
20
|
adantl |
|- ( ( k = K /\ l = L ) -> if ( j = l , .1. , .0. ) = if ( j = L , .1. , .0. ) ) |
22 |
18 21
|
ifbieq1d |
|- ( ( k = K /\ l = L ) -> if ( i = k , if ( j = l , .1. , .0. ) , ( i M j ) ) = if ( i = K , if ( j = L , .1. , .0. ) , ( i M j ) ) ) |
23 |
22
|
mpoeq3dv |
|- ( ( k = K /\ l = L ) -> ( i e. N , j e. N |-> if ( i = k , if ( j = l , .1. , .0. ) , ( i M j ) ) ) = ( i e. N , j e. N |-> if ( i = K , if ( j = L , .1. , .0. ) , ( i M j ) ) ) ) |
24 |
23
|
adantl |
|- ( ( ( M e. B /\ K e. N /\ L e. N ) /\ ( k = K /\ l = L ) ) -> ( i e. N , j e. N |-> if ( i = k , if ( j = l , .1. , .0. ) , ( i M j ) ) ) = ( i e. N , j e. N |-> if ( i = K , if ( j = L , .1. , .0. ) , ( i M j ) ) ) ) |
25 |
8 9 16 24
|
ovmpodv2 |
|- ( ( M e. B /\ K e. N /\ L e. N ) -> ( ( Q ` M ) = ( k e. N , l e. N |-> ( i e. N , j e. N |-> if ( i = k , if ( j = l , .1. , .0. ) , ( i M j ) ) ) ) -> ( K ( Q ` M ) L ) = ( i e. N , j e. N |-> if ( i = K , if ( j = L , .1. , .0. ) , ( i M j ) ) ) ) ) |
26 |
7 25
|
mpd |
|- ( ( M e. B /\ K e. N /\ L e. N ) -> ( K ( Q ` M ) L ) = ( i e. N , j e. N |-> if ( i = K , if ( j = L , .1. , .0. ) , ( i M j ) ) ) ) |