| Step | Hyp | Ref | Expression | 
						
							| 1 |  | minveco.x |  |-  X = ( BaseSet ` U ) | 
						
							| 2 |  | minveco.m |  |-  M = ( -v ` U ) | 
						
							| 3 |  | minveco.n |  |-  N = ( normCV ` U ) | 
						
							| 4 |  | minveco.y |  |-  Y = ( BaseSet ` W ) | 
						
							| 5 |  | minveco.u |  |-  ( ph -> U e. CPreHilOLD ) | 
						
							| 6 |  | minveco.w |  |-  ( ph -> W e. ( ( SubSp ` U ) i^i CBan ) ) | 
						
							| 7 |  | minveco.a |  |-  ( ph -> A e. X ) | 
						
							| 8 |  | minveco.d |  |-  D = ( IndMet ` U ) | 
						
							| 9 |  | minveco.j |  |-  J = ( MetOpen ` D ) | 
						
							| 10 |  | minveco.r |  |-  R = ran ( y e. Y |-> ( N ` ( A M y ) ) ) | 
						
							| 11 |  | minveco.s |  |-  S = inf ( R , RR , < ) | 
						
							| 12 |  | minvecolem2.1 |  |-  ( ph -> B e. RR ) | 
						
							| 13 |  | minvecolem2.2 |  |-  ( ph -> 0 <_ B ) | 
						
							| 14 |  | minvecolem2.3 |  |-  ( ph -> K e. Y ) | 
						
							| 15 |  | minvecolem2.4 |  |-  ( ph -> L e. Y ) | 
						
							| 16 |  | minvecolem2.5 |  |-  ( ph -> ( ( A D K ) ^ 2 ) <_ ( ( S ^ 2 ) + B ) ) | 
						
							| 17 |  | minvecolem2.6 |  |-  ( ph -> ( ( A D L ) ^ 2 ) <_ ( ( S ^ 2 ) + B ) ) | 
						
							| 18 |  | 4re |  |-  4 e. RR | 
						
							| 19 | 1 2 3 4 5 6 7 8 9 10 | minvecolem1 |  |-  ( ph -> ( R C_ RR /\ R =/= (/) /\ A. w e. R 0 <_ w ) ) | 
						
							| 20 | 19 | simp1d |  |-  ( ph -> R C_ RR ) | 
						
							| 21 | 19 | simp2d |  |-  ( ph -> R =/= (/) ) | 
						
							| 22 |  | 0re |  |-  0 e. RR | 
						
							| 23 | 19 | simp3d |  |-  ( ph -> A. w e. R 0 <_ w ) | 
						
							| 24 |  | breq1 |  |-  ( x = 0 -> ( x <_ w <-> 0 <_ w ) ) | 
						
							| 25 | 24 | ralbidv |  |-  ( x = 0 -> ( A. w e. R x <_ w <-> A. w e. R 0 <_ w ) ) | 
						
							| 26 | 25 | rspcev |  |-  ( ( 0 e. RR /\ A. w e. R 0 <_ w ) -> E. x e. RR A. w e. R x <_ w ) | 
						
							| 27 | 22 23 26 | sylancr |  |-  ( ph -> E. x e. RR A. w e. R x <_ w ) | 
						
							| 28 |  | infrecl |  |-  ( ( R C_ RR /\ R =/= (/) /\ E. x e. RR A. w e. R x <_ w ) -> inf ( R , RR , < ) e. RR ) | 
						
							| 29 | 20 21 27 28 | syl3anc |  |-  ( ph -> inf ( R , RR , < ) e. RR ) | 
						
							| 30 | 11 29 | eqeltrid |  |-  ( ph -> S e. RR ) | 
						
							| 31 | 30 | resqcld |  |-  ( ph -> ( S ^ 2 ) e. RR ) | 
						
							| 32 |  | remulcl |  |-  ( ( 4 e. RR /\ ( S ^ 2 ) e. RR ) -> ( 4 x. ( S ^ 2 ) ) e. RR ) | 
						
							| 33 | 18 31 32 | sylancr |  |-  ( ph -> ( 4 x. ( S ^ 2 ) ) e. RR ) | 
						
							| 34 |  | phnv |  |-  ( U e. CPreHilOLD -> U e. NrmCVec ) | 
						
							| 35 | 5 34 | syl |  |-  ( ph -> U e. NrmCVec ) | 
						
							| 36 | 1 8 | imsmet |  |-  ( U e. NrmCVec -> D e. ( Met ` X ) ) | 
						
							| 37 | 35 36 | syl |  |-  ( ph -> D e. ( Met ` X ) ) | 
						
							| 38 |  | inss1 |  |-  ( ( SubSp ` U ) i^i CBan ) C_ ( SubSp ` U ) | 
						
							| 39 | 38 6 | sselid |  |-  ( ph -> W e. ( SubSp ` U ) ) | 
						
							| 40 |  | eqid |  |-  ( SubSp ` U ) = ( SubSp ` U ) | 
						
							| 41 | 1 4 40 | sspba |  |-  ( ( U e. NrmCVec /\ W e. ( SubSp ` U ) ) -> Y C_ X ) | 
						
							| 42 | 35 39 41 | syl2anc |  |-  ( ph -> Y C_ X ) | 
						
							| 43 | 42 14 | sseldd |  |-  ( ph -> K e. X ) | 
						
							| 44 | 42 15 | sseldd |  |-  ( ph -> L e. X ) | 
						
							| 45 |  | metcl |  |-  ( ( D e. ( Met ` X ) /\ K e. X /\ L e. X ) -> ( K D L ) e. RR ) | 
						
							| 46 | 37 43 44 45 | syl3anc |  |-  ( ph -> ( K D L ) e. RR ) | 
						
							| 47 | 46 | resqcld |  |-  ( ph -> ( ( K D L ) ^ 2 ) e. RR ) | 
						
							| 48 | 33 47 | readdcld |  |-  ( ph -> ( ( 4 x. ( S ^ 2 ) ) + ( ( K D L ) ^ 2 ) ) e. RR ) | 
						
							| 49 |  | ax-1cn |  |-  1 e. CC | 
						
							| 50 |  | halfcl |  |-  ( 1 e. CC -> ( 1 / 2 ) e. CC ) | 
						
							| 51 | 49 50 | mp1i |  |-  ( ph -> ( 1 / 2 ) e. CC ) | 
						
							| 52 |  | eqid |  |-  ( +v ` U ) = ( +v ` U ) | 
						
							| 53 |  | eqid |  |-  ( +v ` W ) = ( +v ` W ) | 
						
							| 54 | 4 52 53 40 | sspgval |  |-  ( ( ( U e. NrmCVec /\ W e. ( SubSp ` U ) ) /\ ( K e. Y /\ L e. Y ) ) -> ( K ( +v ` W ) L ) = ( K ( +v ` U ) L ) ) | 
						
							| 55 | 35 39 14 15 54 | syl22anc |  |-  ( ph -> ( K ( +v ` W ) L ) = ( K ( +v ` U ) L ) ) | 
						
							| 56 | 40 | sspnv |  |-  ( ( U e. NrmCVec /\ W e. ( SubSp ` U ) ) -> W e. NrmCVec ) | 
						
							| 57 | 35 39 56 | syl2anc |  |-  ( ph -> W e. NrmCVec ) | 
						
							| 58 | 4 53 | nvgcl |  |-  ( ( W e. NrmCVec /\ K e. Y /\ L e. Y ) -> ( K ( +v ` W ) L ) e. Y ) | 
						
							| 59 | 57 14 15 58 | syl3anc |  |-  ( ph -> ( K ( +v ` W ) L ) e. Y ) | 
						
							| 60 | 55 59 | eqeltrrd |  |-  ( ph -> ( K ( +v ` U ) L ) e. Y ) | 
						
							| 61 |  | eqid |  |-  ( .sOLD ` U ) = ( .sOLD ` U ) | 
						
							| 62 |  | eqid |  |-  ( .sOLD ` W ) = ( .sOLD ` W ) | 
						
							| 63 | 4 61 62 40 | sspsval |  |-  ( ( ( U e. NrmCVec /\ W e. ( SubSp ` U ) ) /\ ( ( 1 / 2 ) e. CC /\ ( K ( +v ` U ) L ) e. Y ) ) -> ( ( 1 / 2 ) ( .sOLD ` W ) ( K ( +v ` U ) L ) ) = ( ( 1 / 2 ) ( .sOLD ` U ) ( K ( +v ` U ) L ) ) ) | 
						
							| 64 | 35 39 51 60 63 | syl22anc |  |-  ( ph -> ( ( 1 / 2 ) ( .sOLD ` W ) ( K ( +v ` U ) L ) ) = ( ( 1 / 2 ) ( .sOLD ` U ) ( K ( +v ` U ) L ) ) ) | 
						
							| 65 | 4 62 | nvscl |  |-  ( ( W e. NrmCVec /\ ( 1 / 2 ) e. CC /\ ( K ( +v ` U ) L ) e. Y ) -> ( ( 1 / 2 ) ( .sOLD ` W ) ( K ( +v ` U ) L ) ) e. Y ) | 
						
							| 66 | 57 51 60 65 | syl3anc |  |-  ( ph -> ( ( 1 / 2 ) ( .sOLD ` W ) ( K ( +v ` U ) L ) ) e. Y ) | 
						
							| 67 | 64 66 | eqeltrrd |  |-  ( ph -> ( ( 1 / 2 ) ( .sOLD ` U ) ( K ( +v ` U ) L ) ) e. Y ) | 
						
							| 68 | 42 67 | sseldd |  |-  ( ph -> ( ( 1 / 2 ) ( .sOLD ` U ) ( K ( +v ` U ) L ) ) e. X ) | 
						
							| 69 | 1 2 | nvmcl |  |-  ( ( U e. NrmCVec /\ A e. X /\ ( ( 1 / 2 ) ( .sOLD ` U ) ( K ( +v ` U ) L ) ) e. X ) -> ( A M ( ( 1 / 2 ) ( .sOLD ` U ) ( K ( +v ` U ) L ) ) ) e. X ) | 
						
							| 70 | 35 7 68 69 | syl3anc |  |-  ( ph -> ( A M ( ( 1 / 2 ) ( .sOLD ` U ) ( K ( +v ` U ) L ) ) ) e. X ) | 
						
							| 71 | 1 3 | nvcl |  |-  ( ( U e. NrmCVec /\ ( A M ( ( 1 / 2 ) ( .sOLD ` U ) ( K ( +v ` U ) L ) ) ) e. X ) -> ( N ` ( A M ( ( 1 / 2 ) ( .sOLD ` U ) ( K ( +v ` U ) L ) ) ) ) e. RR ) | 
						
							| 72 | 35 70 71 | syl2anc |  |-  ( ph -> ( N ` ( A M ( ( 1 / 2 ) ( .sOLD ` U ) ( K ( +v ` U ) L ) ) ) ) e. RR ) | 
						
							| 73 | 72 | resqcld |  |-  ( ph -> ( ( N ` ( A M ( ( 1 / 2 ) ( .sOLD ` U ) ( K ( +v ` U ) L ) ) ) ) ^ 2 ) e. RR ) | 
						
							| 74 |  | remulcl |  |-  ( ( 4 e. RR /\ ( ( N ` ( A M ( ( 1 / 2 ) ( .sOLD ` U ) ( K ( +v ` U ) L ) ) ) ) ^ 2 ) e. RR ) -> ( 4 x. ( ( N ` ( A M ( ( 1 / 2 ) ( .sOLD ` U ) ( K ( +v ` U ) L ) ) ) ) ^ 2 ) ) e. RR ) | 
						
							| 75 | 18 73 74 | sylancr |  |-  ( ph -> ( 4 x. ( ( N ` ( A M ( ( 1 / 2 ) ( .sOLD ` U ) ( K ( +v ` U ) L ) ) ) ) ^ 2 ) ) e. RR ) | 
						
							| 76 | 75 47 | readdcld |  |-  ( ph -> ( ( 4 x. ( ( N ` ( A M ( ( 1 / 2 ) ( .sOLD ` U ) ( K ( +v ` U ) L ) ) ) ) ^ 2 ) ) + ( ( K D L ) ^ 2 ) ) e. RR ) | 
						
							| 77 | 31 12 | readdcld |  |-  ( ph -> ( ( S ^ 2 ) + B ) e. RR ) | 
						
							| 78 |  | remulcl |  |-  ( ( 4 e. RR /\ ( ( S ^ 2 ) + B ) e. RR ) -> ( 4 x. ( ( S ^ 2 ) + B ) ) e. RR ) | 
						
							| 79 | 18 77 78 | sylancr |  |-  ( ph -> ( 4 x. ( ( S ^ 2 ) + B ) ) e. RR ) | 
						
							| 80 | 22 | a1i |  |-  ( ph -> 0 e. RR ) | 
						
							| 81 |  | infregelb |  |-  ( ( ( R C_ RR /\ R =/= (/) /\ E. x e. RR A. w e. R x <_ w ) /\ 0 e. RR ) -> ( 0 <_ inf ( R , RR , < ) <-> A. w e. R 0 <_ w ) ) | 
						
							| 82 | 20 21 27 80 81 | syl31anc |  |-  ( ph -> ( 0 <_ inf ( R , RR , < ) <-> A. w e. R 0 <_ w ) ) | 
						
							| 83 | 23 82 | mpbird |  |-  ( ph -> 0 <_ inf ( R , RR , < ) ) | 
						
							| 84 | 83 11 | breqtrrdi |  |-  ( ph -> 0 <_ S ) | 
						
							| 85 |  | eqid |  |-  ( N ` ( A M ( ( 1 / 2 ) ( .sOLD ` U ) ( K ( +v ` U ) L ) ) ) ) = ( N ` ( A M ( ( 1 / 2 ) ( .sOLD ` U ) ( K ( +v ` U ) L ) ) ) ) | 
						
							| 86 |  | oveq2 |  |-  ( y = ( ( 1 / 2 ) ( .sOLD ` U ) ( K ( +v ` U ) L ) ) -> ( A M y ) = ( A M ( ( 1 / 2 ) ( .sOLD ` U ) ( K ( +v ` U ) L ) ) ) ) | 
						
							| 87 | 86 | fveq2d |  |-  ( y = ( ( 1 / 2 ) ( .sOLD ` U ) ( K ( +v ` U ) L ) ) -> ( N ` ( A M y ) ) = ( N ` ( A M ( ( 1 / 2 ) ( .sOLD ` U ) ( K ( +v ` U ) L ) ) ) ) ) | 
						
							| 88 | 87 | rspceeqv |  |-  ( ( ( ( 1 / 2 ) ( .sOLD ` U ) ( K ( +v ` U ) L ) ) e. Y /\ ( N ` ( A M ( ( 1 / 2 ) ( .sOLD ` U ) ( K ( +v ` U ) L ) ) ) ) = ( N ` ( A M ( ( 1 / 2 ) ( .sOLD ` U ) ( K ( +v ` U ) L ) ) ) ) ) -> E. y e. Y ( N ` ( A M ( ( 1 / 2 ) ( .sOLD ` U ) ( K ( +v ` U ) L ) ) ) ) = ( N ` ( A M y ) ) ) | 
						
							| 89 | 67 85 88 | sylancl |  |-  ( ph -> E. y e. Y ( N ` ( A M ( ( 1 / 2 ) ( .sOLD ` U ) ( K ( +v ` U ) L ) ) ) ) = ( N ` ( A M y ) ) ) | 
						
							| 90 |  | eqid |  |-  ( y e. Y |-> ( N ` ( A M y ) ) ) = ( y e. Y |-> ( N ` ( A M y ) ) ) | 
						
							| 91 |  | fvex |  |-  ( N ` ( A M y ) ) e. _V | 
						
							| 92 | 90 91 | elrnmpti |  |-  ( ( N ` ( A M ( ( 1 / 2 ) ( .sOLD ` U ) ( K ( +v ` U ) L ) ) ) ) e. ran ( y e. Y |-> ( N ` ( A M y ) ) ) <-> E. y e. Y ( N ` ( A M ( ( 1 / 2 ) ( .sOLD ` U ) ( K ( +v ` U ) L ) ) ) ) = ( N ` ( A M y ) ) ) | 
						
							| 93 | 89 92 | sylibr |  |-  ( ph -> ( N ` ( A M ( ( 1 / 2 ) ( .sOLD ` U ) ( K ( +v ` U ) L ) ) ) ) e. ran ( y e. Y |-> ( N ` ( A M y ) ) ) ) | 
						
							| 94 | 93 10 | eleqtrrdi |  |-  ( ph -> ( N ` ( A M ( ( 1 / 2 ) ( .sOLD ` U ) ( K ( +v ` U ) L ) ) ) ) e. R ) | 
						
							| 95 |  | infrelb |  |-  ( ( R C_ RR /\ E. x e. RR A. w e. R x <_ w /\ ( N ` ( A M ( ( 1 / 2 ) ( .sOLD ` U ) ( K ( +v ` U ) L ) ) ) ) e. R ) -> inf ( R , RR , < ) <_ ( N ` ( A M ( ( 1 / 2 ) ( .sOLD ` U ) ( K ( +v ` U ) L ) ) ) ) ) | 
						
							| 96 | 20 27 94 95 | syl3anc |  |-  ( ph -> inf ( R , RR , < ) <_ ( N ` ( A M ( ( 1 / 2 ) ( .sOLD ` U ) ( K ( +v ` U ) L ) ) ) ) ) | 
						
							| 97 | 11 96 | eqbrtrid |  |-  ( ph -> S <_ ( N ` ( A M ( ( 1 / 2 ) ( .sOLD ` U ) ( K ( +v ` U ) L ) ) ) ) ) | 
						
							| 98 |  | le2sq2 |  |-  ( ( ( S e. RR /\ 0 <_ S ) /\ ( ( N ` ( A M ( ( 1 / 2 ) ( .sOLD ` U ) ( K ( +v ` U ) L ) ) ) ) e. RR /\ S <_ ( N ` ( A M ( ( 1 / 2 ) ( .sOLD ` U ) ( K ( +v ` U ) L ) ) ) ) ) ) -> ( S ^ 2 ) <_ ( ( N ` ( A M ( ( 1 / 2 ) ( .sOLD ` U ) ( K ( +v ` U ) L ) ) ) ) ^ 2 ) ) | 
						
							| 99 | 30 84 72 97 98 | syl22anc |  |-  ( ph -> ( S ^ 2 ) <_ ( ( N ` ( A M ( ( 1 / 2 ) ( .sOLD ` U ) ( K ( +v ` U ) L ) ) ) ) ^ 2 ) ) | 
						
							| 100 |  | 4pos |  |-  0 < 4 | 
						
							| 101 | 18 100 | pm3.2i |  |-  ( 4 e. RR /\ 0 < 4 ) | 
						
							| 102 |  | lemul2 |  |-  ( ( ( S ^ 2 ) e. RR /\ ( ( N ` ( A M ( ( 1 / 2 ) ( .sOLD ` U ) ( K ( +v ` U ) L ) ) ) ) ^ 2 ) e. RR /\ ( 4 e. RR /\ 0 < 4 ) ) -> ( ( S ^ 2 ) <_ ( ( N ` ( A M ( ( 1 / 2 ) ( .sOLD ` U ) ( K ( +v ` U ) L ) ) ) ) ^ 2 ) <-> ( 4 x. ( S ^ 2 ) ) <_ ( 4 x. ( ( N ` ( A M ( ( 1 / 2 ) ( .sOLD ` U ) ( K ( +v ` U ) L ) ) ) ) ^ 2 ) ) ) ) | 
						
							| 103 | 101 102 | mp3an3 |  |-  ( ( ( S ^ 2 ) e. RR /\ ( ( N ` ( A M ( ( 1 / 2 ) ( .sOLD ` U ) ( K ( +v ` U ) L ) ) ) ) ^ 2 ) e. RR ) -> ( ( S ^ 2 ) <_ ( ( N ` ( A M ( ( 1 / 2 ) ( .sOLD ` U ) ( K ( +v ` U ) L ) ) ) ) ^ 2 ) <-> ( 4 x. ( S ^ 2 ) ) <_ ( 4 x. ( ( N ` ( A M ( ( 1 / 2 ) ( .sOLD ` U ) ( K ( +v ` U ) L ) ) ) ) ^ 2 ) ) ) ) | 
						
							| 104 | 31 73 103 | syl2anc |  |-  ( ph -> ( ( S ^ 2 ) <_ ( ( N ` ( A M ( ( 1 / 2 ) ( .sOLD ` U ) ( K ( +v ` U ) L ) ) ) ) ^ 2 ) <-> ( 4 x. ( S ^ 2 ) ) <_ ( 4 x. ( ( N ` ( A M ( ( 1 / 2 ) ( .sOLD ` U ) ( K ( +v ` U ) L ) ) ) ) ^ 2 ) ) ) ) | 
						
							| 105 | 99 104 | mpbid |  |-  ( ph -> ( 4 x. ( S ^ 2 ) ) <_ ( 4 x. ( ( N ` ( A M ( ( 1 / 2 ) ( .sOLD ` U ) ( K ( +v ` U ) L ) ) ) ) ^ 2 ) ) ) | 
						
							| 106 | 33 75 47 105 | leadd1dd |  |-  ( ph -> ( ( 4 x. ( S ^ 2 ) ) + ( ( K D L ) ^ 2 ) ) <_ ( ( 4 x. ( ( N ` ( A M ( ( 1 / 2 ) ( .sOLD ` U ) ( K ( +v ` U ) L ) ) ) ) ^ 2 ) ) + ( ( K D L ) ^ 2 ) ) ) | 
						
							| 107 |  | metcl |  |-  ( ( D e. ( Met ` X ) /\ A e. X /\ K e. X ) -> ( A D K ) e. RR ) | 
						
							| 108 | 37 7 43 107 | syl3anc |  |-  ( ph -> ( A D K ) e. RR ) | 
						
							| 109 | 108 | resqcld |  |-  ( ph -> ( ( A D K ) ^ 2 ) e. RR ) | 
						
							| 110 |  | metcl |  |-  ( ( D e. ( Met ` X ) /\ A e. X /\ L e. X ) -> ( A D L ) e. RR ) | 
						
							| 111 | 37 7 44 110 | syl3anc |  |-  ( ph -> ( A D L ) e. RR ) | 
						
							| 112 | 111 | resqcld |  |-  ( ph -> ( ( A D L ) ^ 2 ) e. RR ) | 
						
							| 113 | 109 112 77 77 16 17 | le2addd |  |-  ( ph -> ( ( ( A D K ) ^ 2 ) + ( ( A D L ) ^ 2 ) ) <_ ( ( ( S ^ 2 ) + B ) + ( ( S ^ 2 ) + B ) ) ) | 
						
							| 114 | 77 | recnd |  |-  ( ph -> ( ( S ^ 2 ) + B ) e. CC ) | 
						
							| 115 | 114 | 2timesd |  |-  ( ph -> ( 2 x. ( ( S ^ 2 ) + B ) ) = ( ( ( S ^ 2 ) + B ) + ( ( S ^ 2 ) + B ) ) ) | 
						
							| 116 | 113 115 | breqtrrd |  |-  ( ph -> ( ( ( A D K ) ^ 2 ) + ( ( A D L ) ^ 2 ) ) <_ ( 2 x. ( ( S ^ 2 ) + B ) ) ) | 
						
							| 117 | 109 112 | readdcld |  |-  ( ph -> ( ( ( A D K ) ^ 2 ) + ( ( A D L ) ^ 2 ) ) e. RR ) | 
						
							| 118 |  | 2re |  |-  2 e. RR | 
						
							| 119 |  | remulcl |  |-  ( ( 2 e. RR /\ ( ( S ^ 2 ) + B ) e. RR ) -> ( 2 x. ( ( S ^ 2 ) + B ) ) e. RR ) | 
						
							| 120 | 118 77 119 | sylancr |  |-  ( ph -> ( 2 x. ( ( S ^ 2 ) + B ) ) e. RR ) | 
						
							| 121 |  | 2pos |  |-  0 < 2 | 
						
							| 122 | 118 121 | pm3.2i |  |-  ( 2 e. RR /\ 0 < 2 ) | 
						
							| 123 |  | lemul2 |  |-  ( ( ( ( ( A D K ) ^ 2 ) + ( ( A D L ) ^ 2 ) ) e. RR /\ ( 2 x. ( ( S ^ 2 ) + B ) ) e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( ( ( ( A D K ) ^ 2 ) + ( ( A D L ) ^ 2 ) ) <_ ( 2 x. ( ( S ^ 2 ) + B ) ) <-> ( 2 x. ( ( ( A D K ) ^ 2 ) + ( ( A D L ) ^ 2 ) ) ) <_ ( 2 x. ( 2 x. ( ( S ^ 2 ) + B ) ) ) ) ) | 
						
							| 124 | 122 123 | mp3an3 |  |-  ( ( ( ( ( A D K ) ^ 2 ) + ( ( A D L ) ^ 2 ) ) e. RR /\ ( 2 x. ( ( S ^ 2 ) + B ) ) e. RR ) -> ( ( ( ( A D K ) ^ 2 ) + ( ( A D L ) ^ 2 ) ) <_ ( 2 x. ( ( S ^ 2 ) + B ) ) <-> ( 2 x. ( ( ( A D K ) ^ 2 ) + ( ( A D L ) ^ 2 ) ) ) <_ ( 2 x. ( 2 x. ( ( S ^ 2 ) + B ) ) ) ) ) | 
						
							| 125 | 117 120 124 | syl2anc |  |-  ( ph -> ( ( ( ( A D K ) ^ 2 ) + ( ( A D L ) ^ 2 ) ) <_ ( 2 x. ( ( S ^ 2 ) + B ) ) <-> ( 2 x. ( ( ( A D K ) ^ 2 ) + ( ( A D L ) ^ 2 ) ) ) <_ ( 2 x. ( 2 x. ( ( S ^ 2 ) + B ) ) ) ) ) | 
						
							| 126 | 116 125 | mpbid |  |-  ( ph -> ( 2 x. ( ( ( A D K ) ^ 2 ) + ( ( A D L ) ^ 2 ) ) ) <_ ( 2 x. ( 2 x. ( ( S ^ 2 ) + B ) ) ) ) | 
						
							| 127 | 1 2 | nvmcl |  |-  ( ( U e. NrmCVec /\ A e. X /\ K e. X ) -> ( A M K ) e. X ) | 
						
							| 128 | 35 7 43 127 | syl3anc |  |-  ( ph -> ( A M K ) e. X ) | 
						
							| 129 | 1 2 | nvmcl |  |-  ( ( U e. NrmCVec /\ A e. X /\ L e. X ) -> ( A M L ) e. X ) | 
						
							| 130 | 35 7 44 129 | syl3anc |  |-  ( ph -> ( A M L ) e. X ) | 
						
							| 131 | 1 52 2 3 | phpar2 |  |-  ( ( U e. CPreHilOLD /\ ( A M K ) e. X /\ ( A M L ) e. X ) -> ( ( ( N ` ( ( A M K ) ( +v ` U ) ( A M L ) ) ) ^ 2 ) + ( ( N ` ( ( A M K ) M ( A M L ) ) ) ^ 2 ) ) = ( 2 x. ( ( ( N ` ( A M K ) ) ^ 2 ) + ( ( N ` ( A M L ) ) ^ 2 ) ) ) ) | 
						
							| 132 | 5 128 130 131 | syl3anc |  |-  ( ph -> ( ( ( N ` ( ( A M K ) ( +v ` U ) ( A M L ) ) ) ^ 2 ) + ( ( N ` ( ( A M K ) M ( A M L ) ) ) ^ 2 ) ) = ( 2 x. ( ( ( N ` ( A M K ) ) ^ 2 ) + ( ( N ` ( A M L ) ) ^ 2 ) ) ) ) | 
						
							| 133 |  | 2cn |  |-  2 e. CC | 
						
							| 134 | 72 | recnd |  |-  ( ph -> ( N ` ( A M ( ( 1 / 2 ) ( .sOLD ` U ) ( K ( +v ` U ) L ) ) ) ) e. CC ) | 
						
							| 135 |  | sqmul |  |-  ( ( 2 e. CC /\ ( N ` ( A M ( ( 1 / 2 ) ( .sOLD ` U ) ( K ( +v ` U ) L ) ) ) ) e. CC ) -> ( ( 2 x. ( N ` ( A M ( ( 1 / 2 ) ( .sOLD ` U ) ( K ( +v ` U ) L ) ) ) ) ) ^ 2 ) = ( ( 2 ^ 2 ) x. ( ( N ` ( A M ( ( 1 / 2 ) ( .sOLD ` U ) ( K ( +v ` U ) L ) ) ) ) ^ 2 ) ) ) | 
						
							| 136 | 133 134 135 | sylancr |  |-  ( ph -> ( ( 2 x. ( N ` ( A M ( ( 1 / 2 ) ( .sOLD ` U ) ( K ( +v ` U ) L ) ) ) ) ) ^ 2 ) = ( ( 2 ^ 2 ) x. ( ( N ` ( A M ( ( 1 / 2 ) ( .sOLD ` U ) ( K ( +v ` U ) L ) ) ) ) ^ 2 ) ) ) | 
						
							| 137 |  | sq2 |  |-  ( 2 ^ 2 ) = 4 | 
						
							| 138 | 137 | oveq1i |  |-  ( ( 2 ^ 2 ) x. ( ( N ` ( A M ( ( 1 / 2 ) ( .sOLD ` U ) ( K ( +v ` U ) L ) ) ) ) ^ 2 ) ) = ( 4 x. ( ( N ` ( A M ( ( 1 / 2 ) ( .sOLD ` U ) ( K ( +v ` U ) L ) ) ) ) ^ 2 ) ) | 
						
							| 139 | 136 138 | eqtrdi |  |-  ( ph -> ( ( 2 x. ( N ` ( A M ( ( 1 / 2 ) ( .sOLD ` U ) ( K ( +v ` U ) L ) ) ) ) ) ^ 2 ) = ( 4 x. ( ( N ` ( A M ( ( 1 / 2 ) ( .sOLD ` U ) ( K ( +v ` U ) L ) ) ) ) ^ 2 ) ) ) | 
						
							| 140 | 133 | a1i |  |-  ( ph -> 2 e. CC ) | 
						
							| 141 | 1 61 3 | nvs |  |-  ( ( U e. NrmCVec /\ 2 e. CC /\ ( A M ( ( 1 / 2 ) ( .sOLD ` U ) ( K ( +v ` U ) L ) ) ) e. X ) -> ( N ` ( 2 ( .sOLD ` U ) ( A M ( ( 1 / 2 ) ( .sOLD ` U ) ( K ( +v ` U ) L ) ) ) ) ) = ( ( abs ` 2 ) x. ( N ` ( A M ( ( 1 / 2 ) ( .sOLD ` U ) ( K ( +v ` U ) L ) ) ) ) ) ) | 
						
							| 142 | 35 140 70 141 | syl3anc |  |-  ( ph -> ( N ` ( 2 ( .sOLD ` U ) ( A M ( ( 1 / 2 ) ( .sOLD ` U ) ( K ( +v ` U ) L ) ) ) ) ) = ( ( abs ` 2 ) x. ( N ` ( A M ( ( 1 / 2 ) ( .sOLD ` U ) ( K ( +v ` U ) L ) ) ) ) ) ) | 
						
							| 143 |  | 0le2 |  |-  0 <_ 2 | 
						
							| 144 |  | absid |  |-  ( ( 2 e. RR /\ 0 <_ 2 ) -> ( abs ` 2 ) = 2 ) | 
						
							| 145 | 118 143 144 | mp2an |  |-  ( abs ` 2 ) = 2 | 
						
							| 146 | 145 | oveq1i |  |-  ( ( abs ` 2 ) x. ( N ` ( A M ( ( 1 / 2 ) ( .sOLD ` U ) ( K ( +v ` U ) L ) ) ) ) ) = ( 2 x. ( N ` ( A M ( ( 1 / 2 ) ( .sOLD ` U ) ( K ( +v ` U ) L ) ) ) ) ) | 
						
							| 147 | 142 146 | eqtrdi |  |-  ( ph -> ( N ` ( 2 ( .sOLD ` U ) ( A M ( ( 1 / 2 ) ( .sOLD ` U ) ( K ( +v ` U ) L ) ) ) ) ) = ( 2 x. ( N ` ( A M ( ( 1 / 2 ) ( .sOLD ` U ) ( K ( +v ` U ) L ) ) ) ) ) ) | 
						
							| 148 | 1 2 61 | nvmdi |  |-  ( ( U e. NrmCVec /\ ( 2 e. CC /\ A e. X /\ ( ( 1 / 2 ) ( .sOLD ` U ) ( K ( +v ` U ) L ) ) e. X ) ) -> ( 2 ( .sOLD ` U ) ( A M ( ( 1 / 2 ) ( .sOLD ` U ) ( K ( +v ` U ) L ) ) ) ) = ( ( 2 ( .sOLD ` U ) A ) M ( 2 ( .sOLD ` U ) ( ( 1 / 2 ) ( .sOLD ` U ) ( K ( +v ` U ) L ) ) ) ) ) | 
						
							| 149 | 35 140 7 68 148 | syl13anc |  |-  ( ph -> ( 2 ( .sOLD ` U ) ( A M ( ( 1 / 2 ) ( .sOLD ` U ) ( K ( +v ` U ) L ) ) ) ) = ( ( 2 ( .sOLD ` U ) A ) M ( 2 ( .sOLD ` U ) ( ( 1 / 2 ) ( .sOLD ` U ) ( K ( +v ` U ) L ) ) ) ) ) | 
						
							| 150 | 1 52 61 | nv2 |  |-  ( ( U e. NrmCVec /\ A e. X ) -> ( A ( +v ` U ) A ) = ( 2 ( .sOLD ` U ) A ) ) | 
						
							| 151 | 35 7 150 | syl2anc |  |-  ( ph -> ( A ( +v ` U ) A ) = ( 2 ( .sOLD ` U ) A ) ) | 
						
							| 152 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 153 | 133 152 | recidi |  |-  ( 2 x. ( 1 / 2 ) ) = 1 | 
						
							| 154 | 153 | oveq1i |  |-  ( ( 2 x. ( 1 / 2 ) ) ( .sOLD ` U ) ( K ( +v ` U ) L ) ) = ( 1 ( .sOLD ` U ) ( K ( +v ` U ) L ) ) | 
						
							| 155 | 1 52 | nvgcl |  |-  ( ( U e. NrmCVec /\ K e. X /\ L e. X ) -> ( K ( +v ` U ) L ) e. X ) | 
						
							| 156 | 35 43 44 155 | syl3anc |  |-  ( ph -> ( K ( +v ` U ) L ) e. X ) | 
						
							| 157 | 1 61 | nvsid |  |-  ( ( U e. NrmCVec /\ ( K ( +v ` U ) L ) e. X ) -> ( 1 ( .sOLD ` U ) ( K ( +v ` U ) L ) ) = ( K ( +v ` U ) L ) ) | 
						
							| 158 | 35 156 157 | syl2anc |  |-  ( ph -> ( 1 ( .sOLD ` U ) ( K ( +v ` U ) L ) ) = ( K ( +v ` U ) L ) ) | 
						
							| 159 | 154 158 | eqtrid |  |-  ( ph -> ( ( 2 x. ( 1 / 2 ) ) ( .sOLD ` U ) ( K ( +v ` U ) L ) ) = ( K ( +v ` U ) L ) ) | 
						
							| 160 | 1 61 | nvsass |  |-  ( ( U e. NrmCVec /\ ( 2 e. CC /\ ( 1 / 2 ) e. CC /\ ( K ( +v ` U ) L ) e. X ) ) -> ( ( 2 x. ( 1 / 2 ) ) ( .sOLD ` U ) ( K ( +v ` U ) L ) ) = ( 2 ( .sOLD ` U ) ( ( 1 / 2 ) ( .sOLD ` U ) ( K ( +v ` U ) L ) ) ) ) | 
						
							| 161 | 35 140 51 156 160 | syl13anc |  |-  ( ph -> ( ( 2 x. ( 1 / 2 ) ) ( .sOLD ` U ) ( K ( +v ` U ) L ) ) = ( 2 ( .sOLD ` U ) ( ( 1 / 2 ) ( .sOLD ` U ) ( K ( +v ` U ) L ) ) ) ) | 
						
							| 162 | 159 161 | eqtr3d |  |-  ( ph -> ( K ( +v ` U ) L ) = ( 2 ( .sOLD ` U ) ( ( 1 / 2 ) ( .sOLD ` U ) ( K ( +v ` U ) L ) ) ) ) | 
						
							| 163 | 151 162 | oveq12d |  |-  ( ph -> ( ( A ( +v ` U ) A ) M ( K ( +v ` U ) L ) ) = ( ( 2 ( .sOLD ` U ) A ) M ( 2 ( .sOLD ` U ) ( ( 1 / 2 ) ( .sOLD ` U ) ( K ( +v ` U ) L ) ) ) ) ) | 
						
							| 164 | 1 52 2 | nvaddsub4 |  |-  ( ( U e. NrmCVec /\ ( A e. X /\ A e. X ) /\ ( K e. X /\ L e. X ) ) -> ( ( A ( +v ` U ) A ) M ( K ( +v ` U ) L ) ) = ( ( A M K ) ( +v ` U ) ( A M L ) ) ) | 
						
							| 165 | 35 7 7 43 44 164 | syl122anc |  |-  ( ph -> ( ( A ( +v ` U ) A ) M ( K ( +v ` U ) L ) ) = ( ( A M K ) ( +v ` U ) ( A M L ) ) ) | 
						
							| 166 | 149 163 165 | 3eqtr2d |  |-  ( ph -> ( 2 ( .sOLD ` U ) ( A M ( ( 1 / 2 ) ( .sOLD ` U ) ( K ( +v ` U ) L ) ) ) ) = ( ( A M K ) ( +v ` U ) ( A M L ) ) ) | 
						
							| 167 | 166 | fveq2d |  |-  ( ph -> ( N ` ( 2 ( .sOLD ` U ) ( A M ( ( 1 / 2 ) ( .sOLD ` U ) ( K ( +v ` U ) L ) ) ) ) ) = ( N ` ( ( A M K ) ( +v ` U ) ( A M L ) ) ) ) | 
						
							| 168 | 147 167 | eqtr3d |  |-  ( ph -> ( 2 x. ( N ` ( A M ( ( 1 / 2 ) ( .sOLD ` U ) ( K ( +v ` U ) L ) ) ) ) ) = ( N ` ( ( A M K ) ( +v ` U ) ( A M L ) ) ) ) | 
						
							| 169 | 168 | oveq1d |  |-  ( ph -> ( ( 2 x. ( N ` ( A M ( ( 1 / 2 ) ( .sOLD ` U ) ( K ( +v ` U ) L ) ) ) ) ) ^ 2 ) = ( ( N ` ( ( A M K ) ( +v ` U ) ( A M L ) ) ) ^ 2 ) ) | 
						
							| 170 | 139 169 | eqtr3d |  |-  ( ph -> ( 4 x. ( ( N ` ( A M ( ( 1 / 2 ) ( .sOLD ` U ) ( K ( +v ` U ) L ) ) ) ) ^ 2 ) ) = ( ( N ` ( ( A M K ) ( +v ` U ) ( A M L ) ) ) ^ 2 ) ) | 
						
							| 171 | 1 2 3 8 | imsdval |  |-  ( ( U e. NrmCVec /\ L e. X /\ K e. X ) -> ( L D K ) = ( N ` ( L M K ) ) ) | 
						
							| 172 | 35 44 43 171 | syl3anc |  |-  ( ph -> ( L D K ) = ( N ` ( L M K ) ) ) | 
						
							| 173 |  | metsym |  |-  ( ( D e. ( Met ` X ) /\ K e. X /\ L e. X ) -> ( K D L ) = ( L D K ) ) | 
						
							| 174 | 37 43 44 173 | syl3anc |  |-  ( ph -> ( K D L ) = ( L D K ) ) | 
						
							| 175 | 1 2 | nvnnncan1 |  |-  ( ( U e. NrmCVec /\ ( A e. X /\ K e. X /\ L e. X ) ) -> ( ( A M K ) M ( A M L ) ) = ( L M K ) ) | 
						
							| 176 | 35 7 43 44 175 | syl13anc |  |-  ( ph -> ( ( A M K ) M ( A M L ) ) = ( L M K ) ) | 
						
							| 177 | 176 | fveq2d |  |-  ( ph -> ( N ` ( ( A M K ) M ( A M L ) ) ) = ( N ` ( L M K ) ) ) | 
						
							| 178 | 172 174 177 | 3eqtr4d |  |-  ( ph -> ( K D L ) = ( N ` ( ( A M K ) M ( A M L ) ) ) ) | 
						
							| 179 | 178 | oveq1d |  |-  ( ph -> ( ( K D L ) ^ 2 ) = ( ( N ` ( ( A M K ) M ( A M L ) ) ) ^ 2 ) ) | 
						
							| 180 | 170 179 | oveq12d |  |-  ( ph -> ( ( 4 x. ( ( N ` ( A M ( ( 1 / 2 ) ( .sOLD ` U ) ( K ( +v ` U ) L ) ) ) ) ^ 2 ) ) + ( ( K D L ) ^ 2 ) ) = ( ( ( N ` ( ( A M K ) ( +v ` U ) ( A M L ) ) ) ^ 2 ) + ( ( N ` ( ( A M K ) M ( A M L ) ) ) ^ 2 ) ) ) | 
						
							| 181 | 1 2 3 8 | imsdval |  |-  ( ( U e. NrmCVec /\ A e. X /\ K e. X ) -> ( A D K ) = ( N ` ( A M K ) ) ) | 
						
							| 182 | 35 7 43 181 | syl3anc |  |-  ( ph -> ( A D K ) = ( N ` ( A M K ) ) ) | 
						
							| 183 | 182 | oveq1d |  |-  ( ph -> ( ( A D K ) ^ 2 ) = ( ( N ` ( A M K ) ) ^ 2 ) ) | 
						
							| 184 | 1 2 3 8 | imsdval |  |-  ( ( U e. NrmCVec /\ A e. X /\ L e. X ) -> ( A D L ) = ( N ` ( A M L ) ) ) | 
						
							| 185 | 35 7 44 184 | syl3anc |  |-  ( ph -> ( A D L ) = ( N ` ( A M L ) ) ) | 
						
							| 186 | 185 | oveq1d |  |-  ( ph -> ( ( A D L ) ^ 2 ) = ( ( N ` ( A M L ) ) ^ 2 ) ) | 
						
							| 187 | 183 186 | oveq12d |  |-  ( ph -> ( ( ( A D K ) ^ 2 ) + ( ( A D L ) ^ 2 ) ) = ( ( ( N ` ( A M K ) ) ^ 2 ) + ( ( N ` ( A M L ) ) ^ 2 ) ) ) | 
						
							| 188 | 187 | oveq2d |  |-  ( ph -> ( 2 x. ( ( ( A D K ) ^ 2 ) + ( ( A D L ) ^ 2 ) ) ) = ( 2 x. ( ( ( N ` ( A M K ) ) ^ 2 ) + ( ( N ` ( A M L ) ) ^ 2 ) ) ) ) | 
						
							| 189 | 132 180 188 | 3eqtr4d |  |-  ( ph -> ( ( 4 x. ( ( N ` ( A M ( ( 1 / 2 ) ( .sOLD ` U ) ( K ( +v ` U ) L ) ) ) ) ^ 2 ) ) + ( ( K D L ) ^ 2 ) ) = ( 2 x. ( ( ( A D K ) ^ 2 ) + ( ( A D L ) ^ 2 ) ) ) ) | 
						
							| 190 |  | 2t2e4 |  |-  ( 2 x. 2 ) = 4 | 
						
							| 191 | 190 | oveq1i |  |-  ( ( 2 x. 2 ) x. ( ( S ^ 2 ) + B ) ) = ( 4 x. ( ( S ^ 2 ) + B ) ) | 
						
							| 192 | 140 140 114 | mulassd |  |-  ( ph -> ( ( 2 x. 2 ) x. ( ( S ^ 2 ) + B ) ) = ( 2 x. ( 2 x. ( ( S ^ 2 ) + B ) ) ) ) | 
						
							| 193 | 191 192 | eqtr3id |  |-  ( ph -> ( 4 x. ( ( S ^ 2 ) + B ) ) = ( 2 x. ( 2 x. ( ( S ^ 2 ) + B ) ) ) ) | 
						
							| 194 | 126 189 193 | 3brtr4d |  |-  ( ph -> ( ( 4 x. ( ( N ` ( A M ( ( 1 / 2 ) ( .sOLD ` U ) ( K ( +v ` U ) L ) ) ) ) ^ 2 ) ) + ( ( K D L ) ^ 2 ) ) <_ ( 4 x. ( ( S ^ 2 ) + B ) ) ) | 
						
							| 195 | 48 76 79 106 194 | letrd |  |-  ( ph -> ( ( 4 x. ( S ^ 2 ) ) + ( ( K D L ) ^ 2 ) ) <_ ( 4 x. ( ( S ^ 2 ) + B ) ) ) | 
						
							| 196 |  | 4cn |  |-  4 e. CC | 
						
							| 197 | 196 | a1i |  |-  ( ph -> 4 e. CC ) | 
						
							| 198 | 31 | recnd |  |-  ( ph -> ( S ^ 2 ) e. CC ) | 
						
							| 199 | 12 | recnd |  |-  ( ph -> B e. CC ) | 
						
							| 200 | 197 198 199 | adddid |  |-  ( ph -> ( 4 x. ( ( S ^ 2 ) + B ) ) = ( ( 4 x. ( S ^ 2 ) ) + ( 4 x. B ) ) ) | 
						
							| 201 | 195 200 | breqtrd |  |-  ( ph -> ( ( 4 x. ( S ^ 2 ) ) + ( ( K D L ) ^ 2 ) ) <_ ( ( 4 x. ( S ^ 2 ) ) + ( 4 x. B ) ) ) | 
						
							| 202 |  | remulcl |  |-  ( ( 4 e. RR /\ B e. RR ) -> ( 4 x. B ) e. RR ) | 
						
							| 203 | 18 12 202 | sylancr |  |-  ( ph -> ( 4 x. B ) e. RR ) | 
						
							| 204 | 47 203 33 | leadd2d |  |-  ( ph -> ( ( ( K D L ) ^ 2 ) <_ ( 4 x. B ) <-> ( ( 4 x. ( S ^ 2 ) ) + ( ( K D L ) ^ 2 ) ) <_ ( ( 4 x. ( S ^ 2 ) ) + ( 4 x. B ) ) ) ) | 
						
							| 205 | 201 204 | mpbird |  |-  ( ph -> ( ( K D L ) ^ 2 ) <_ ( 4 x. B ) ) |