| Step | Hyp | Ref | Expression | 
						
							| 1 |  | minveco.x |  |-  X = ( BaseSet ` U ) | 
						
							| 2 |  | minveco.m |  |-  M = ( -v ` U ) | 
						
							| 3 |  | minveco.n |  |-  N = ( normCV ` U ) | 
						
							| 4 |  | minveco.y |  |-  Y = ( BaseSet ` W ) | 
						
							| 5 |  | minveco.u |  |-  ( ph -> U e. CPreHilOLD ) | 
						
							| 6 |  | minveco.w |  |-  ( ph -> W e. ( ( SubSp ` U ) i^i CBan ) ) | 
						
							| 7 |  | minveco.a |  |-  ( ph -> A e. X ) | 
						
							| 8 |  | minveco.d |  |-  D = ( IndMet ` U ) | 
						
							| 9 |  | minveco.j |  |-  J = ( MetOpen ` D ) | 
						
							| 10 |  | minveco.r |  |-  R = ran ( y e. Y |-> ( N ` ( A M y ) ) ) | 
						
							| 11 |  | minveco.s |  |-  S = inf ( R , RR , < ) | 
						
							| 12 |  | minveco.f |  |-  ( ph -> F : NN --> Y ) | 
						
							| 13 |  | minveco.1 |  |-  ( ( ph /\ n e. NN ) -> ( ( A D ( F ` n ) ) ^ 2 ) <_ ( ( S ^ 2 ) + ( 1 / n ) ) ) | 
						
							| 14 |  | 4re |  |-  4 e. RR | 
						
							| 15 |  | 4pos |  |-  0 < 4 | 
						
							| 16 | 14 15 | elrpii |  |-  4 e. RR+ | 
						
							| 17 |  | simpr |  |-  ( ( ph /\ x e. RR+ ) -> x e. RR+ ) | 
						
							| 18 |  | 2z |  |-  2 e. ZZ | 
						
							| 19 |  | rpexpcl |  |-  ( ( x e. RR+ /\ 2 e. ZZ ) -> ( x ^ 2 ) e. RR+ ) | 
						
							| 20 | 17 18 19 | sylancl |  |-  ( ( ph /\ x e. RR+ ) -> ( x ^ 2 ) e. RR+ ) | 
						
							| 21 |  | rpdivcl |  |-  ( ( 4 e. RR+ /\ ( x ^ 2 ) e. RR+ ) -> ( 4 / ( x ^ 2 ) ) e. RR+ ) | 
						
							| 22 | 16 20 21 | sylancr |  |-  ( ( ph /\ x e. RR+ ) -> ( 4 / ( x ^ 2 ) ) e. RR+ ) | 
						
							| 23 |  | rprege0 |  |-  ( ( 4 / ( x ^ 2 ) ) e. RR+ -> ( ( 4 / ( x ^ 2 ) ) e. RR /\ 0 <_ ( 4 / ( x ^ 2 ) ) ) ) | 
						
							| 24 |  | flge0nn0 |  |-  ( ( ( 4 / ( x ^ 2 ) ) e. RR /\ 0 <_ ( 4 / ( x ^ 2 ) ) ) -> ( |_ ` ( 4 / ( x ^ 2 ) ) ) e. NN0 ) | 
						
							| 25 |  | nn0p1nn |  |-  ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) e. NN0 -> ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) e. NN ) | 
						
							| 26 | 22 23 24 25 | 4syl |  |-  ( ( ph /\ x e. RR+ ) -> ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) e. NN ) | 
						
							| 27 |  | phnv |  |-  ( U e. CPreHilOLD -> U e. NrmCVec ) | 
						
							| 28 | 1 8 | imsmet |  |-  ( U e. NrmCVec -> D e. ( Met ` X ) ) | 
						
							| 29 | 5 27 28 | 3syl |  |-  ( ph -> D e. ( Met ` X ) ) | 
						
							| 30 | 29 | ad2antrr |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> D e. ( Met ` X ) ) | 
						
							| 31 | 5 27 | syl |  |-  ( ph -> U e. NrmCVec ) | 
						
							| 32 |  | inss1 |  |-  ( ( SubSp ` U ) i^i CBan ) C_ ( SubSp ` U ) | 
						
							| 33 | 32 6 | sselid |  |-  ( ph -> W e. ( SubSp ` U ) ) | 
						
							| 34 |  | eqid |  |-  ( SubSp ` U ) = ( SubSp ` U ) | 
						
							| 35 | 1 4 34 | sspba |  |-  ( ( U e. NrmCVec /\ W e. ( SubSp ` U ) ) -> Y C_ X ) | 
						
							| 36 | 31 33 35 | syl2anc |  |-  ( ph -> Y C_ X ) | 
						
							| 37 | 36 | ad2antrr |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> Y C_ X ) | 
						
							| 38 | 12 | ad2antrr |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> F : NN --> Y ) | 
						
							| 39 | 26 | adantr |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) e. NN ) | 
						
							| 40 | 38 39 | ffvelcdmd |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( F ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) e. Y ) | 
						
							| 41 | 37 40 | sseldd |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( F ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) e. X ) | 
						
							| 42 |  | eluznn |  |-  ( ( ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) e. NN /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> n e. NN ) | 
						
							| 43 | 26 42 | sylan |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> n e. NN ) | 
						
							| 44 | 38 43 | ffvelcdmd |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( F ` n ) e. Y ) | 
						
							| 45 | 37 44 | sseldd |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( F ` n ) e. X ) | 
						
							| 46 |  | metcl |  |-  ( ( D e. ( Met ` X ) /\ ( F ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) e. X /\ ( F ` n ) e. X ) -> ( ( F ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) D ( F ` n ) ) e. RR ) | 
						
							| 47 | 30 41 45 46 | syl3anc |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( ( F ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) D ( F ` n ) ) e. RR ) | 
						
							| 48 | 47 | resqcld |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( ( ( F ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) D ( F ` n ) ) ^ 2 ) e. RR ) | 
						
							| 49 | 39 | nnrpd |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) e. RR+ ) | 
						
							| 50 | 49 | rpreccld |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( 1 / ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) e. RR+ ) | 
						
							| 51 |  | rpmulcl |  |-  ( ( 4 e. RR+ /\ ( 1 / ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) e. RR+ ) -> ( 4 x. ( 1 / ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) e. RR+ ) | 
						
							| 52 | 16 50 51 | sylancr |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( 4 x. ( 1 / ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) e. RR+ ) | 
						
							| 53 | 52 | rpred |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( 4 x. ( 1 / ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) e. RR ) | 
						
							| 54 | 20 | adantr |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( x ^ 2 ) e. RR+ ) | 
						
							| 55 | 54 | rpred |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( x ^ 2 ) e. RR ) | 
						
							| 56 | 5 | ad2antrr |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> U e. CPreHilOLD ) | 
						
							| 57 | 6 | ad2antrr |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> W e. ( ( SubSp ` U ) i^i CBan ) ) | 
						
							| 58 | 7 | ad2antrr |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> A e. X ) | 
						
							| 59 | 26 | nnrpd |  |-  ( ( ph /\ x e. RR+ ) -> ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) e. RR+ ) | 
						
							| 60 | 59 | rpreccld |  |-  ( ( ph /\ x e. RR+ ) -> ( 1 / ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) e. RR+ ) | 
						
							| 61 | 60 | adantr |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( 1 / ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) e. RR+ ) | 
						
							| 62 | 61 | rpred |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( 1 / ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) e. RR ) | 
						
							| 63 | 61 | rpge0d |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> 0 <_ ( 1 / ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) | 
						
							| 64 | 12 | adantr |  |-  ( ( ph /\ x e. RR+ ) -> F : NN --> Y ) | 
						
							| 65 | 64 | ffvelcdmda |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. NN ) -> ( F ` n ) e. Y ) | 
						
							| 66 | 43 65 | syldan |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( F ` n ) e. Y ) | 
						
							| 67 |  | fveq2 |  |-  ( n = ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) -> ( F ` n ) = ( F ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) | 
						
							| 68 | 67 | oveq2d |  |-  ( n = ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) -> ( A D ( F ` n ) ) = ( A D ( F ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) ) | 
						
							| 69 | 68 | oveq1d |  |-  ( n = ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) -> ( ( A D ( F ` n ) ) ^ 2 ) = ( ( A D ( F ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) ^ 2 ) ) | 
						
							| 70 |  | oveq2 |  |-  ( n = ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) -> ( 1 / n ) = ( 1 / ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) | 
						
							| 71 | 70 | oveq2d |  |-  ( n = ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) -> ( ( S ^ 2 ) + ( 1 / n ) ) = ( ( S ^ 2 ) + ( 1 / ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) ) | 
						
							| 72 | 69 71 | breq12d |  |-  ( n = ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) -> ( ( ( A D ( F ` n ) ) ^ 2 ) <_ ( ( S ^ 2 ) + ( 1 / n ) ) <-> ( ( A D ( F ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) ^ 2 ) <_ ( ( S ^ 2 ) + ( 1 / ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) ) ) | 
						
							| 73 | 13 | ralrimiva |  |-  ( ph -> A. n e. NN ( ( A D ( F ` n ) ) ^ 2 ) <_ ( ( S ^ 2 ) + ( 1 / n ) ) ) | 
						
							| 74 | 73 | ad2antrr |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> A. n e. NN ( ( A D ( F ` n ) ) ^ 2 ) <_ ( ( S ^ 2 ) + ( 1 / n ) ) ) | 
						
							| 75 | 72 74 39 | rspcdva |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( ( A D ( F ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) ^ 2 ) <_ ( ( S ^ 2 ) + ( 1 / ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) ) | 
						
							| 76 | 37 66 | sseldd |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( F ` n ) e. X ) | 
						
							| 77 |  | metcl |  |-  ( ( D e. ( Met ` X ) /\ A e. X /\ ( F ` n ) e. X ) -> ( A D ( F ` n ) ) e. RR ) | 
						
							| 78 | 30 58 76 77 | syl3anc |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( A D ( F ` n ) ) e. RR ) | 
						
							| 79 | 78 | resqcld |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( ( A D ( F ` n ) ) ^ 2 ) e. RR ) | 
						
							| 80 | 1 2 3 4 5 6 7 8 9 10 | minvecolem1 |  |-  ( ph -> ( R C_ RR /\ R =/= (/) /\ A. w e. R 0 <_ w ) ) | 
						
							| 81 |  | 0re |  |-  0 e. RR | 
						
							| 82 |  | breq1 |  |-  ( x = 0 -> ( x <_ w <-> 0 <_ w ) ) | 
						
							| 83 | 82 | ralbidv |  |-  ( x = 0 -> ( A. w e. R x <_ w <-> A. w e. R 0 <_ w ) ) | 
						
							| 84 | 83 | rspcev |  |-  ( ( 0 e. RR /\ A. w e. R 0 <_ w ) -> E. x e. RR A. w e. R x <_ w ) | 
						
							| 85 | 81 84 | mpan |  |-  ( A. w e. R 0 <_ w -> E. x e. RR A. w e. R x <_ w ) | 
						
							| 86 | 85 | 3anim3i |  |-  ( ( R C_ RR /\ R =/= (/) /\ A. w e. R 0 <_ w ) -> ( R C_ RR /\ R =/= (/) /\ E. x e. RR A. w e. R x <_ w ) ) | 
						
							| 87 |  | infrecl |  |-  ( ( R C_ RR /\ R =/= (/) /\ E. x e. RR A. w e. R x <_ w ) -> inf ( R , RR , < ) e. RR ) | 
						
							| 88 | 80 86 87 | 3syl |  |-  ( ph -> inf ( R , RR , < ) e. RR ) | 
						
							| 89 | 11 88 | eqeltrid |  |-  ( ph -> S e. RR ) | 
						
							| 90 | 89 | resqcld |  |-  ( ph -> ( S ^ 2 ) e. RR ) | 
						
							| 91 | 90 | ad2antrr |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( S ^ 2 ) e. RR ) | 
						
							| 92 | 43 | nnrecred |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( 1 / n ) e. RR ) | 
						
							| 93 | 91 92 | readdcld |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( ( S ^ 2 ) + ( 1 / n ) ) e. RR ) | 
						
							| 94 | 91 62 | readdcld |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( ( S ^ 2 ) + ( 1 / ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) e. RR ) | 
						
							| 95 | 13 | adantlr |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. NN ) -> ( ( A D ( F ` n ) ) ^ 2 ) <_ ( ( S ^ 2 ) + ( 1 / n ) ) ) | 
						
							| 96 | 43 95 | syldan |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( ( A D ( F ` n ) ) ^ 2 ) <_ ( ( S ^ 2 ) + ( 1 / n ) ) ) | 
						
							| 97 |  | eluzle |  |-  ( n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) -> ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) <_ n ) | 
						
							| 98 | 97 | adantl |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) <_ n ) | 
						
							| 99 | 49 | rpregt0d |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) e. RR /\ 0 < ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) | 
						
							| 100 |  | nnre |  |-  ( n e. NN -> n e. RR ) | 
						
							| 101 |  | nngt0 |  |-  ( n e. NN -> 0 < n ) | 
						
							| 102 | 100 101 | jca |  |-  ( n e. NN -> ( n e. RR /\ 0 < n ) ) | 
						
							| 103 | 43 102 | syl |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( n e. RR /\ 0 < n ) ) | 
						
							| 104 |  | lerec |  |-  ( ( ( ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) e. RR /\ 0 < ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) /\ ( n e. RR /\ 0 < n ) ) -> ( ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) <_ n <-> ( 1 / n ) <_ ( 1 / ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) ) | 
						
							| 105 | 99 103 104 | syl2anc |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) <_ n <-> ( 1 / n ) <_ ( 1 / ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) ) | 
						
							| 106 | 98 105 | mpbid |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( 1 / n ) <_ ( 1 / ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) | 
						
							| 107 | 92 62 91 106 | leadd2dd |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( ( S ^ 2 ) + ( 1 / n ) ) <_ ( ( S ^ 2 ) + ( 1 / ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) ) | 
						
							| 108 | 79 93 94 96 107 | letrd |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( ( A D ( F ` n ) ) ^ 2 ) <_ ( ( S ^ 2 ) + ( 1 / ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) ) | 
						
							| 109 | 1 2 3 4 56 57 58 8 9 10 11 62 63 40 66 75 108 | minvecolem2 |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( ( ( F ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) D ( F ` n ) ) ^ 2 ) <_ ( 4 x. ( 1 / ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) ) | 
						
							| 110 |  | rpdivcl |  |-  ( ( ( x ^ 2 ) e. RR+ /\ 4 e. RR+ ) -> ( ( x ^ 2 ) / 4 ) e. RR+ ) | 
						
							| 111 | 54 16 110 | sylancl |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( ( x ^ 2 ) / 4 ) e. RR+ ) | 
						
							| 112 |  | rpcnne0 |  |-  ( ( x ^ 2 ) e. RR+ -> ( ( x ^ 2 ) e. CC /\ ( x ^ 2 ) =/= 0 ) ) | 
						
							| 113 | 54 112 | syl |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( ( x ^ 2 ) e. CC /\ ( x ^ 2 ) =/= 0 ) ) | 
						
							| 114 |  | rpcnne0 |  |-  ( 4 e. RR+ -> ( 4 e. CC /\ 4 =/= 0 ) ) | 
						
							| 115 | 16 114 | ax-mp |  |-  ( 4 e. CC /\ 4 =/= 0 ) | 
						
							| 116 |  | recdiv |  |-  ( ( ( ( x ^ 2 ) e. CC /\ ( x ^ 2 ) =/= 0 ) /\ ( 4 e. CC /\ 4 =/= 0 ) ) -> ( 1 / ( ( x ^ 2 ) / 4 ) ) = ( 4 / ( x ^ 2 ) ) ) | 
						
							| 117 | 113 115 116 | sylancl |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( 1 / ( ( x ^ 2 ) / 4 ) ) = ( 4 / ( x ^ 2 ) ) ) | 
						
							| 118 | 22 | adantr |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( 4 / ( x ^ 2 ) ) e. RR+ ) | 
						
							| 119 | 118 | rpred |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( 4 / ( x ^ 2 ) ) e. RR ) | 
						
							| 120 |  | flltp1 |  |-  ( ( 4 / ( x ^ 2 ) ) e. RR -> ( 4 / ( x ^ 2 ) ) < ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) | 
						
							| 121 | 119 120 | syl |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( 4 / ( x ^ 2 ) ) < ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) | 
						
							| 122 | 117 121 | eqbrtrd |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( 1 / ( ( x ^ 2 ) / 4 ) ) < ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) | 
						
							| 123 | 111 49 122 | ltrec1d |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( 1 / ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) < ( ( x ^ 2 ) / 4 ) ) | 
						
							| 124 | 14 15 | pm3.2i |  |-  ( 4 e. RR /\ 0 < 4 ) | 
						
							| 125 |  | ltmuldiv2 |  |-  ( ( ( 1 / ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) e. RR /\ ( x ^ 2 ) e. RR /\ ( 4 e. RR /\ 0 < 4 ) ) -> ( ( 4 x. ( 1 / ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) < ( x ^ 2 ) <-> ( 1 / ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) < ( ( x ^ 2 ) / 4 ) ) ) | 
						
							| 126 | 124 125 | mp3an3 |  |-  ( ( ( 1 / ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) e. RR /\ ( x ^ 2 ) e. RR ) -> ( ( 4 x. ( 1 / ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) < ( x ^ 2 ) <-> ( 1 / ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) < ( ( x ^ 2 ) / 4 ) ) ) | 
						
							| 127 | 62 55 126 | syl2anc |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( ( 4 x. ( 1 / ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) < ( x ^ 2 ) <-> ( 1 / ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) < ( ( x ^ 2 ) / 4 ) ) ) | 
						
							| 128 | 123 127 | mpbird |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( 4 x. ( 1 / ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) < ( x ^ 2 ) ) | 
						
							| 129 | 48 53 55 109 128 | lelttrd |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( ( ( F ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) D ( F ` n ) ) ^ 2 ) < ( x ^ 2 ) ) | 
						
							| 130 |  | metge0 |  |-  ( ( D e. ( Met ` X ) /\ ( F ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) e. X /\ ( F ` n ) e. X ) -> 0 <_ ( ( F ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) D ( F ` n ) ) ) | 
						
							| 131 | 30 41 45 130 | syl3anc |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> 0 <_ ( ( F ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) D ( F ` n ) ) ) | 
						
							| 132 |  | rprege0 |  |-  ( x e. RR+ -> ( x e. RR /\ 0 <_ x ) ) | 
						
							| 133 | 132 | ad2antlr |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( x e. RR /\ 0 <_ x ) ) | 
						
							| 134 |  | lt2sq |  |-  ( ( ( ( ( F ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) D ( F ` n ) ) e. RR /\ 0 <_ ( ( F ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) D ( F ` n ) ) ) /\ ( x e. RR /\ 0 <_ x ) ) -> ( ( ( F ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) D ( F ` n ) ) < x <-> ( ( ( F ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) D ( F ` n ) ) ^ 2 ) < ( x ^ 2 ) ) ) | 
						
							| 135 | 47 131 133 134 | syl21anc |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( ( ( F ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) D ( F ` n ) ) < x <-> ( ( ( F ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) D ( F ` n ) ) ^ 2 ) < ( x ^ 2 ) ) ) | 
						
							| 136 | 129 135 | mpbird |  |-  ( ( ( ph /\ x e. RR+ ) /\ n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) -> ( ( F ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) D ( F ` n ) ) < x ) | 
						
							| 137 | 136 | ralrimiva |  |-  ( ( ph /\ x e. RR+ ) -> A. n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ( ( F ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) D ( F ` n ) ) < x ) | 
						
							| 138 |  | fveq2 |  |-  ( j = ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) -> ( ZZ>= ` j ) = ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) | 
						
							| 139 |  | fveq2 |  |-  ( j = ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) -> ( F ` j ) = ( F ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ) | 
						
							| 140 | 139 | oveq1d |  |-  ( j = ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) -> ( ( F ` j ) D ( F ` n ) ) = ( ( F ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) D ( F ` n ) ) ) | 
						
							| 141 | 140 | breq1d |  |-  ( j = ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) -> ( ( ( F ` j ) D ( F ` n ) ) < x <-> ( ( F ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) D ( F ` n ) ) < x ) ) | 
						
							| 142 | 138 141 | raleqbidv |  |-  ( j = ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) -> ( A. n e. ( ZZ>= ` j ) ( ( F ` j ) D ( F ` n ) ) < x <-> A. n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ( ( F ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) D ( F ` n ) ) < x ) ) | 
						
							| 143 | 142 | rspcev |  |-  ( ( ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) e. NN /\ A. n e. ( ZZ>= ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) ( ( F ` ( ( |_ ` ( 4 / ( x ^ 2 ) ) ) + 1 ) ) D ( F ` n ) ) < x ) -> E. j e. NN A. n e. ( ZZ>= ` j ) ( ( F ` j ) D ( F ` n ) ) < x ) | 
						
							| 144 | 26 137 143 | syl2anc |  |-  ( ( ph /\ x e. RR+ ) -> E. j e. NN A. n e. ( ZZ>= ` j ) ( ( F ` j ) D ( F ` n ) ) < x ) | 
						
							| 145 | 144 | ralrimiva |  |-  ( ph -> A. x e. RR+ E. j e. NN A. n e. ( ZZ>= ` j ) ( ( F ` j ) D ( F ` n ) ) < x ) | 
						
							| 146 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 147 | 1 8 | imsxmet |  |-  ( U e. NrmCVec -> D e. ( *Met ` X ) ) | 
						
							| 148 | 5 27 147 | 3syl |  |-  ( ph -> D e. ( *Met ` X ) ) | 
						
							| 149 |  | 1zzd |  |-  ( ph -> 1 e. ZZ ) | 
						
							| 150 |  | eqidd |  |-  ( ( ph /\ n e. NN ) -> ( F ` n ) = ( F ` n ) ) | 
						
							| 151 |  | eqidd |  |-  ( ( ph /\ j e. NN ) -> ( F ` j ) = ( F ` j ) ) | 
						
							| 152 | 12 36 | fssd |  |-  ( ph -> F : NN --> X ) | 
						
							| 153 | 146 148 149 150 151 152 | iscauf |  |-  ( ph -> ( F e. ( Cau ` D ) <-> A. x e. RR+ E. j e. NN A. n e. ( ZZ>= ` j ) ( ( F ` j ) D ( F ` n ) ) < x ) ) | 
						
							| 154 | 145 153 | mpbird |  |-  ( ph -> F e. ( Cau ` D ) ) |