Step |
Hyp |
Ref |
Expression |
1 |
|
minveco.x |
|- X = ( BaseSet ` U ) |
2 |
|
minveco.m |
|- M = ( -v ` U ) |
3 |
|
minveco.n |
|- N = ( normCV ` U ) |
4 |
|
minveco.y |
|- Y = ( BaseSet ` W ) |
5 |
|
minveco.u |
|- ( ph -> U e. CPreHilOLD ) |
6 |
|
minveco.w |
|- ( ph -> W e. ( ( SubSp ` U ) i^i CBan ) ) |
7 |
|
minveco.a |
|- ( ph -> A e. X ) |
8 |
|
minveco.d |
|- D = ( IndMet ` U ) |
9 |
|
minveco.j |
|- J = ( MetOpen ` D ) |
10 |
|
minveco.r |
|- R = ran ( y e. Y |-> ( N ` ( A M y ) ) ) |
11 |
|
minveco.s |
|- S = inf ( R , RR , < ) |
12 |
|
minveco.f |
|- ( ph -> F : NN --> Y ) |
13 |
|
minveco.1 |
|- ( ( ph /\ n e. NN ) -> ( ( A D ( F ` n ) ) ^ 2 ) <_ ( ( S ^ 2 ) + ( 1 / n ) ) ) |
14 |
|
minveco.t |
|- T = ( 1 / ( ( ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ^ 2 ) - ( S ^ 2 ) ) ) |
15 |
|
phnv |
|- ( U e. CPreHilOLD -> U e. NrmCVec ) |
16 |
1 8
|
imsxmet |
|- ( U e. NrmCVec -> D e. ( *Met ` X ) ) |
17 |
5 15 16
|
3syl |
|- ( ph -> D e. ( *Met ` X ) ) |
18 |
9
|
methaus |
|- ( D e. ( *Met ` X ) -> J e. Haus ) |
19 |
|
lmfun |
|- ( J e. Haus -> Fun ( ~~>t ` J ) ) |
20 |
17 18 19
|
3syl |
|- ( ph -> Fun ( ~~>t ` J ) ) |
21 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
minvecolem4a |
|- ( ph -> F ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ( ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ` F ) ) |
22 |
|
eqid |
|- ( J |`t Y ) = ( J |`t Y ) |
23 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
24 |
4
|
fvexi |
|- Y e. _V |
25 |
24
|
a1i |
|- ( ph -> Y e. _V ) |
26 |
5 15
|
syl |
|- ( ph -> U e. NrmCVec ) |
27 |
9
|
mopntop |
|- ( D e. ( *Met ` X ) -> J e. Top ) |
28 |
26 16 27
|
3syl |
|- ( ph -> J e. Top ) |
29 |
|
elin |
|- ( W e. ( ( SubSp ` U ) i^i CBan ) <-> ( W e. ( SubSp ` U ) /\ W e. CBan ) ) |
30 |
6 29
|
sylib |
|- ( ph -> ( W e. ( SubSp ` U ) /\ W e. CBan ) ) |
31 |
30
|
simpld |
|- ( ph -> W e. ( SubSp ` U ) ) |
32 |
|
eqid |
|- ( SubSp ` U ) = ( SubSp ` U ) |
33 |
1 4 32
|
sspba |
|- ( ( U e. NrmCVec /\ W e. ( SubSp ` U ) ) -> Y C_ X ) |
34 |
26 31 33
|
syl2anc |
|- ( ph -> Y C_ X ) |
35 |
|
xmetres2 |
|- ( ( D e. ( *Met ` X ) /\ Y C_ X ) -> ( D |` ( Y X. Y ) ) e. ( *Met ` Y ) ) |
36 |
17 34 35
|
syl2anc |
|- ( ph -> ( D |` ( Y X. Y ) ) e. ( *Met ` Y ) ) |
37 |
|
eqid |
|- ( MetOpen ` ( D |` ( Y X. Y ) ) ) = ( MetOpen ` ( D |` ( Y X. Y ) ) ) |
38 |
37
|
mopntopon |
|- ( ( D |` ( Y X. Y ) ) e. ( *Met ` Y ) -> ( MetOpen ` ( D |` ( Y X. Y ) ) ) e. ( TopOn ` Y ) ) |
39 |
36 38
|
syl |
|- ( ph -> ( MetOpen ` ( D |` ( Y X. Y ) ) ) e. ( TopOn ` Y ) ) |
40 |
|
lmcl |
|- ( ( ( MetOpen ` ( D |` ( Y X. Y ) ) ) e. ( TopOn ` Y ) /\ F ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ( ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ` F ) ) -> ( ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ` F ) e. Y ) |
41 |
39 21 40
|
syl2anc |
|- ( ph -> ( ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ` F ) e. Y ) |
42 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
43 |
22 23 25 28 41 42 12
|
lmss |
|- ( ph -> ( F ( ~~>t ` J ) ( ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ` F ) <-> F ( ~~>t ` ( J |`t Y ) ) ( ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ` F ) ) ) |
44 |
|
eqid |
|- ( D |` ( Y X. Y ) ) = ( D |` ( Y X. Y ) ) |
45 |
44 9 37
|
metrest |
|- ( ( D e. ( *Met ` X ) /\ Y C_ X ) -> ( J |`t Y ) = ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) |
46 |
17 34 45
|
syl2anc |
|- ( ph -> ( J |`t Y ) = ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) |
47 |
46
|
fveq2d |
|- ( ph -> ( ~~>t ` ( J |`t Y ) ) = ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ) |
48 |
47
|
breqd |
|- ( ph -> ( F ( ~~>t ` ( J |`t Y ) ) ( ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ` F ) <-> F ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ( ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ` F ) ) ) |
49 |
43 48
|
bitrd |
|- ( ph -> ( F ( ~~>t ` J ) ( ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ` F ) <-> F ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ( ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ` F ) ) ) |
50 |
21 49
|
mpbird |
|- ( ph -> F ( ~~>t ` J ) ( ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ` F ) ) |
51 |
|
funbrfv |
|- ( Fun ( ~~>t ` J ) -> ( F ( ~~>t ` J ) ( ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ` F ) -> ( ( ~~>t ` J ) ` F ) = ( ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ` F ) ) ) |
52 |
20 50 51
|
sylc |
|- ( ph -> ( ( ~~>t ` J ) ` F ) = ( ( ~~>t ` ( MetOpen ` ( D |` ( Y X. Y ) ) ) ) ` F ) ) |
53 |
52 41
|
eqeltrd |
|- ( ph -> ( ( ~~>t ` J ) ` F ) e. Y ) |
54 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
minvecolem4b |
|- ( ph -> ( ( ~~>t ` J ) ` F ) e. X ) |
55 |
1 2 3 8
|
imsdval |
|- ( ( U e. NrmCVec /\ A e. X /\ ( ( ~~>t ` J ) ` F ) e. X ) -> ( A D ( ( ~~>t ` J ) ` F ) ) = ( N ` ( A M ( ( ~~>t ` J ) ` F ) ) ) ) |
56 |
26 7 54 55
|
syl3anc |
|- ( ph -> ( A D ( ( ~~>t ` J ) ` F ) ) = ( N ` ( A M ( ( ~~>t ` J ) ` F ) ) ) ) |
57 |
56
|
adantr |
|- ( ( ph /\ y e. Y ) -> ( A D ( ( ~~>t ` J ) ` F ) ) = ( N ` ( A M ( ( ~~>t ` J ) ` F ) ) ) ) |
58 |
1 8
|
imsmet |
|- ( U e. NrmCVec -> D e. ( Met ` X ) ) |
59 |
5 15 58
|
3syl |
|- ( ph -> D e. ( Met ` X ) ) |
60 |
|
metcl |
|- ( ( D e. ( Met ` X ) /\ A e. X /\ ( ( ~~>t ` J ) ` F ) e. X ) -> ( A D ( ( ~~>t ` J ) ` F ) ) e. RR ) |
61 |
59 7 54 60
|
syl3anc |
|- ( ph -> ( A D ( ( ~~>t ` J ) ` F ) ) e. RR ) |
62 |
61
|
adantr |
|- ( ( ph /\ y e. Y ) -> ( A D ( ( ~~>t ` J ) ` F ) ) e. RR ) |
63 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
minvecolem4c |
|- ( ph -> S e. RR ) |
64 |
63
|
adantr |
|- ( ( ph /\ y e. Y ) -> S e. RR ) |
65 |
26
|
adantr |
|- ( ( ph /\ y e. Y ) -> U e. NrmCVec ) |
66 |
7
|
adantr |
|- ( ( ph /\ y e. Y ) -> A e. X ) |
67 |
34
|
sselda |
|- ( ( ph /\ y e. Y ) -> y e. X ) |
68 |
1 2
|
nvmcl |
|- ( ( U e. NrmCVec /\ A e. X /\ y e. X ) -> ( A M y ) e. X ) |
69 |
65 66 67 68
|
syl3anc |
|- ( ( ph /\ y e. Y ) -> ( A M y ) e. X ) |
70 |
1 3
|
nvcl |
|- ( ( U e. NrmCVec /\ ( A M y ) e. X ) -> ( N ` ( A M y ) ) e. RR ) |
71 |
65 69 70
|
syl2anc |
|- ( ( ph /\ y e. Y ) -> ( N ` ( A M y ) ) e. RR ) |
72 |
63 61
|
ltnled |
|- ( ph -> ( S < ( A D ( ( ~~>t ` J ) ` F ) ) <-> -. ( A D ( ( ~~>t ` J ) ` F ) ) <_ S ) ) |
73 |
|
eqid |
|- ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) = ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) |
74 |
17
|
adantr |
|- ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) -> D e. ( *Met ` X ) ) |
75 |
61 63
|
readdcld |
|- ( ph -> ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) e. RR ) |
76 |
75
|
rehalfcld |
|- ( ph -> ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) e. RR ) |
77 |
76
|
resqcld |
|- ( ph -> ( ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ^ 2 ) e. RR ) |
78 |
63
|
resqcld |
|- ( ph -> ( S ^ 2 ) e. RR ) |
79 |
77 78
|
resubcld |
|- ( ph -> ( ( ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ^ 2 ) - ( S ^ 2 ) ) e. RR ) |
80 |
79
|
adantr |
|- ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) -> ( ( ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ^ 2 ) - ( S ^ 2 ) ) e. RR ) |
81 |
63 61 63
|
ltadd1d |
|- ( ph -> ( S < ( A D ( ( ~~>t ` J ) ` F ) ) <-> ( S + S ) < ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) ) ) |
82 |
63
|
recnd |
|- ( ph -> S e. CC ) |
83 |
82
|
2timesd |
|- ( ph -> ( 2 x. S ) = ( S + S ) ) |
84 |
83
|
breq1d |
|- ( ph -> ( ( 2 x. S ) < ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) <-> ( S + S ) < ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) ) ) |
85 |
|
2re |
|- 2 e. RR |
86 |
|
2pos |
|- 0 < 2 |
87 |
85 86
|
pm3.2i |
|- ( 2 e. RR /\ 0 < 2 ) |
88 |
87
|
a1i |
|- ( ph -> ( 2 e. RR /\ 0 < 2 ) ) |
89 |
|
ltmuldiv2 |
|- ( ( S e. RR /\ ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( ( 2 x. S ) < ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) <-> S < ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ) ) |
90 |
63 75 88 89
|
syl3anc |
|- ( ph -> ( ( 2 x. S ) < ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) <-> S < ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ) ) |
91 |
81 84 90
|
3bitr2d |
|- ( ph -> ( S < ( A D ( ( ~~>t ` J ) ` F ) ) <-> S < ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ) ) |
92 |
1 2 3 4 5 6 7 8 9 10
|
minvecolem1 |
|- ( ph -> ( R C_ RR /\ R =/= (/) /\ A. w e. R 0 <_ w ) ) |
93 |
92
|
simp3d |
|- ( ph -> A. w e. R 0 <_ w ) |
94 |
92
|
simp1d |
|- ( ph -> R C_ RR ) |
95 |
92
|
simp2d |
|- ( ph -> R =/= (/) ) |
96 |
|
0re |
|- 0 e. RR |
97 |
|
breq1 |
|- ( x = 0 -> ( x <_ w <-> 0 <_ w ) ) |
98 |
97
|
ralbidv |
|- ( x = 0 -> ( A. w e. R x <_ w <-> A. w e. R 0 <_ w ) ) |
99 |
98
|
rspcev |
|- ( ( 0 e. RR /\ A. w e. R 0 <_ w ) -> E. x e. RR A. w e. R x <_ w ) |
100 |
96 93 99
|
sylancr |
|- ( ph -> E. x e. RR A. w e. R x <_ w ) |
101 |
96
|
a1i |
|- ( ph -> 0 e. RR ) |
102 |
|
infregelb |
|- ( ( ( R C_ RR /\ R =/= (/) /\ E. x e. RR A. w e. R x <_ w ) /\ 0 e. RR ) -> ( 0 <_ inf ( R , RR , < ) <-> A. w e. R 0 <_ w ) ) |
103 |
94 95 100 101 102
|
syl31anc |
|- ( ph -> ( 0 <_ inf ( R , RR , < ) <-> A. w e. R 0 <_ w ) ) |
104 |
93 103
|
mpbird |
|- ( ph -> 0 <_ inf ( R , RR , < ) ) |
105 |
104 11
|
breqtrrdi |
|- ( ph -> 0 <_ S ) |
106 |
|
metge0 |
|- ( ( D e. ( Met ` X ) /\ A e. X /\ ( ( ~~>t ` J ) ` F ) e. X ) -> 0 <_ ( A D ( ( ~~>t ` J ) ` F ) ) ) |
107 |
59 7 54 106
|
syl3anc |
|- ( ph -> 0 <_ ( A D ( ( ~~>t ` J ) ` F ) ) ) |
108 |
61 63 107 105
|
addge0d |
|- ( ph -> 0 <_ ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) ) |
109 |
|
divge0 |
|- ( ( ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) e. RR /\ 0 <_ ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) ) /\ ( 2 e. RR /\ 0 < 2 ) ) -> 0 <_ ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ) |
110 |
75 108 88 109
|
syl21anc |
|- ( ph -> 0 <_ ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ) |
111 |
63 76 105 110
|
lt2sqd |
|- ( ph -> ( S < ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) <-> ( S ^ 2 ) < ( ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ^ 2 ) ) ) |
112 |
78 77
|
posdifd |
|- ( ph -> ( ( S ^ 2 ) < ( ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ^ 2 ) <-> 0 < ( ( ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ^ 2 ) - ( S ^ 2 ) ) ) ) |
113 |
91 111 112
|
3bitrd |
|- ( ph -> ( S < ( A D ( ( ~~>t ` J ) ` F ) ) <-> 0 < ( ( ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ^ 2 ) - ( S ^ 2 ) ) ) ) |
114 |
113
|
biimpa |
|- ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) -> 0 < ( ( ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ^ 2 ) - ( S ^ 2 ) ) ) |
115 |
80 114
|
elrpd |
|- ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) -> ( ( ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ^ 2 ) - ( S ^ 2 ) ) e. RR+ ) |
116 |
115
|
rpreccld |
|- ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) -> ( 1 / ( ( ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ^ 2 ) - ( S ^ 2 ) ) ) e. RR+ ) |
117 |
14 116
|
eqeltrid |
|- ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) -> T e. RR+ ) |
118 |
117
|
rprege0d |
|- ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) -> ( T e. RR /\ 0 <_ T ) ) |
119 |
|
flge0nn0 |
|- ( ( T e. RR /\ 0 <_ T ) -> ( |_ ` T ) e. NN0 ) |
120 |
|
nn0p1nn |
|- ( ( |_ ` T ) e. NN0 -> ( ( |_ ` T ) + 1 ) e. NN ) |
121 |
118 119 120
|
3syl |
|- ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) -> ( ( |_ ` T ) + 1 ) e. NN ) |
122 |
121
|
nnzd |
|- ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) -> ( ( |_ ` T ) + 1 ) e. ZZ ) |
123 |
50 52
|
breqtrrd |
|- ( ph -> F ( ~~>t ` J ) ( ( ~~>t ` J ) ` F ) ) |
124 |
123
|
adantr |
|- ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) -> F ( ~~>t ` J ) ( ( ~~>t ` J ) ` F ) ) |
125 |
7
|
adantr |
|- ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) -> A e. X ) |
126 |
76
|
adantr |
|- ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) -> ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) e. RR ) |
127 |
126
|
rexrd |
|- ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) -> ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) e. RR* ) |
128 |
|
simpll |
|- ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> ph ) |
129 |
|
eluznn |
|- ( ( ( ( |_ ` T ) + 1 ) e. NN /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> n e. NN ) |
130 |
121 129
|
sylan |
|- ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> n e. NN ) |
131 |
59
|
adantr |
|- ( ( ph /\ n e. NN ) -> D e. ( Met ` X ) ) |
132 |
7
|
adantr |
|- ( ( ph /\ n e. NN ) -> A e. X ) |
133 |
12 34
|
fssd |
|- ( ph -> F : NN --> X ) |
134 |
133
|
ffvelrnda |
|- ( ( ph /\ n e. NN ) -> ( F ` n ) e. X ) |
135 |
|
metcl |
|- ( ( D e. ( Met ` X ) /\ A e. X /\ ( F ` n ) e. X ) -> ( A D ( F ` n ) ) e. RR ) |
136 |
131 132 134 135
|
syl3anc |
|- ( ( ph /\ n e. NN ) -> ( A D ( F ` n ) ) e. RR ) |
137 |
128 130 136
|
syl2anc |
|- ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> ( A D ( F ` n ) ) e. RR ) |
138 |
137
|
resqcld |
|- ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> ( ( A D ( F ` n ) ) ^ 2 ) e. RR ) |
139 |
63
|
ad2antrr |
|- ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> S e. RR ) |
140 |
139
|
resqcld |
|- ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> ( S ^ 2 ) e. RR ) |
141 |
130
|
nnrecred |
|- ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> ( 1 / n ) e. RR ) |
142 |
140 141
|
readdcld |
|- ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> ( ( S ^ 2 ) + ( 1 / n ) ) e. RR ) |
143 |
77
|
ad2antrr |
|- ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> ( ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ^ 2 ) e. RR ) |
144 |
128 130 13
|
syl2anc |
|- ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> ( ( A D ( F ` n ) ) ^ 2 ) <_ ( ( S ^ 2 ) + ( 1 / n ) ) ) |
145 |
117
|
adantr |
|- ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> T e. RR+ ) |
146 |
145
|
rpred |
|- ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> T e. RR ) |
147 |
|
reflcl |
|- ( T e. RR -> ( |_ ` T ) e. RR ) |
148 |
|
peano2re |
|- ( ( |_ ` T ) e. RR -> ( ( |_ ` T ) + 1 ) e. RR ) |
149 |
146 147 148
|
3syl |
|- ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> ( ( |_ ` T ) + 1 ) e. RR ) |
150 |
130
|
nnred |
|- ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> n e. RR ) |
151 |
|
fllep1 |
|- ( T e. RR -> T <_ ( ( |_ ` T ) + 1 ) ) |
152 |
146 151
|
syl |
|- ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> T <_ ( ( |_ ` T ) + 1 ) ) |
153 |
|
eluzle |
|- ( n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) -> ( ( |_ ` T ) + 1 ) <_ n ) |
154 |
153
|
adantl |
|- ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> ( ( |_ ` T ) + 1 ) <_ n ) |
155 |
146 149 150 152 154
|
letrd |
|- ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> T <_ n ) |
156 |
14 155
|
eqbrtrrid |
|- ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> ( 1 / ( ( ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ^ 2 ) - ( S ^ 2 ) ) ) <_ n ) |
157 |
|
1red |
|- ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> 1 e. RR ) |
158 |
79
|
ad2antrr |
|- ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> ( ( ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ^ 2 ) - ( S ^ 2 ) ) e. RR ) |
159 |
114
|
adantr |
|- ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> 0 < ( ( ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ^ 2 ) - ( S ^ 2 ) ) ) |
160 |
130
|
nngt0d |
|- ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> 0 < n ) |
161 |
|
lediv23 |
|- ( ( 1 e. RR /\ ( ( ( ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ^ 2 ) - ( S ^ 2 ) ) e. RR /\ 0 < ( ( ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ^ 2 ) - ( S ^ 2 ) ) ) /\ ( n e. RR /\ 0 < n ) ) -> ( ( 1 / ( ( ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ^ 2 ) - ( S ^ 2 ) ) ) <_ n <-> ( 1 / n ) <_ ( ( ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ^ 2 ) - ( S ^ 2 ) ) ) ) |
162 |
157 158 159 150 160 161
|
syl122anc |
|- ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> ( ( 1 / ( ( ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ^ 2 ) - ( S ^ 2 ) ) ) <_ n <-> ( 1 / n ) <_ ( ( ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ^ 2 ) - ( S ^ 2 ) ) ) ) |
163 |
156 162
|
mpbid |
|- ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> ( 1 / n ) <_ ( ( ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ^ 2 ) - ( S ^ 2 ) ) ) |
164 |
140 141 143
|
leaddsub2d |
|- ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> ( ( ( S ^ 2 ) + ( 1 / n ) ) <_ ( ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ^ 2 ) <-> ( 1 / n ) <_ ( ( ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ^ 2 ) - ( S ^ 2 ) ) ) ) |
165 |
163 164
|
mpbird |
|- ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> ( ( S ^ 2 ) + ( 1 / n ) ) <_ ( ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ^ 2 ) ) |
166 |
138 142 143 144 165
|
letrd |
|- ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> ( ( A D ( F ` n ) ) ^ 2 ) <_ ( ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ^ 2 ) ) |
167 |
76
|
ad2antrr |
|- ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) e. RR ) |
168 |
|
metge0 |
|- ( ( D e. ( Met ` X ) /\ A e. X /\ ( F ` n ) e. X ) -> 0 <_ ( A D ( F ` n ) ) ) |
169 |
131 132 134 168
|
syl3anc |
|- ( ( ph /\ n e. NN ) -> 0 <_ ( A D ( F ` n ) ) ) |
170 |
128 130 169
|
syl2anc |
|- ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> 0 <_ ( A D ( F ` n ) ) ) |
171 |
110
|
ad2antrr |
|- ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> 0 <_ ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ) |
172 |
137 167 170 171
|
le2sqd |
|- ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> ( ( A D ( F ` n ) ) <_ ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) <-> ( ( A D ( F ` n ) ) ^ 2 ) <_ ( ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ^ 2 ) ) ) |
173 |
166 172
|
mpbird |
|- ( ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) /\ n e. ( ZZ>= ` ( ( |_ ` T ) + 1 ) ) ) -> ( A D ( F ` n ) ) <_ ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ) |
174 |
73 9 74 122 124 125 127 173
|
lmle |
|- ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) -> ( A D ( ( ~~>t ` J ) ` F ) ) <_ ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ) |
175 |
61 63 61
|
leadd2d |
|- ( ph -> ( ( A D ( ( ~~>t ` J ) ` F ) ) <_ S <-> ( ( A D ( ( ~~>t ` J ) ` F ) ) + ( A D ( ( ~~>t ` J ) ` F ) ) ) <_ ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) ) ) |
176 |
61
|
recnd |
|- ( ph -> ( A D ( ( ~~>t ` J ) ` F ) ) e. CC ) |
177 |
176
|
2timesd |
|- ( ph -> ( 2 x. ( A D ( ( ~~>t ` J ) ` F ) ) ) = ( ( A D ( ( ~~>t ` J ) ` F ) ) + ( A D ( ( ~~>t ` J ) ` F ) ) ) ) |
178 |
177
|
breq1d |
|- ( ph -> ( ( 2 x. ( A D ( ( ~~>t ` J ) ` F ) ) ) <_ ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) <-> ( ( A D ( ( ~~>t ` J ) ` F ) ) + ( A D ( ( ~~>t ` J ) ` F ) ) ) <_ ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) ) ) |
179 |
|
lemuldiv2 |
|- ( ( ( A D ( ( ~~>t ` J ) ` F ) ) e. RR /\ ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( ( 2 x. ( A D ( ( ~~>t ` J ) ` F ) ) ) <_ ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) <-> ( A D ( ( ~~>t ` J ) ` F ) ) <_ ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ) ) |
180 |
87 179
|
mp3an3 |
|- ( ( ( A D ( ( ~~>t ` J ) ` F ) ) e. RR /\ ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) e. RR ) -> ( ( 2 x. ( A D ( ( ~~>t ` J ) ` F ) ) ) <_ ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) <-> ( A D ( ( ~~>t ` J ) ` F ) ) <_ ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ) ) |
181 |
61 75 180
|
syl2anc |
|- ( ph -> ( ( 2 x. ( A D ( ( ~~>t ` J ) ` F ) ) ) <_ ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) <-> ( A D ( ( ~~>t ` J ) ` F ) ) <_ ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ) ) |
182 |
175 178 181
|
3bitr2d |
|- ( ph -> ( ( A D ( ( ~~>t ` J ) ` F ) ) <_ S <-> ( A D ( ( ~~>t ` J ) ` F ) ) <_ ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ) ) |
183 |
182
|
biimpar |
|- ( ( ph /\ ( A D ( ( ~~>t ` J ) ` F ) ) <_ ( ( ( A D ( ( ~~>t ` J ) ` F ) ) + S ) / 2 ) ) -> ( A D ( ( ~~>t ` J ) ` F ) ) <_ S ) |
184 |
174 183
|
syldan |
|- ( ( ph /\ S < ( A D ( ( ~~>t ` J ) ` F ) ) ) -> ( A D ( ( ~~>t ` J ) ` F ) ) <_ S ) |
185 |
184
|
ex |
|- ( ph -> ( S < ( A D ( ( ~~>t ` J ) ` F ) ) -> ( A D ( ( ~~>t ` J ) ` F ) ) <_ S ) ) |
186 |
72 185
|
sylbird |
|- ( ph -> ( -. ( A D ( ( ~~>t ` J ) ` F ) ) <_ S -> ( A D ( ( ~~>t ` J ) ` F ) ) <_ S ) ) |
187 |
186
|
pm2.18d |
|- ( ph -> ( A D ( ( ~~>t ` J ) ` F ) ) <_ S ) |
188 |
187
|
adantr |
|- ( ( ph /\ y e. Y ) -> ( A D ( ( ~~>t ` J ) ` F ) ) <_ S ) |
189 |
94
|
adantr |
|- ( ( ph /\ y e. Y ) -> R C_ RR ) |
190 |
100
|
adantr |
|- ( ( ph /\ y e. Y ) -> E. x e. RR A. w e. R x <_ w ) |
191 |
|
simpr |
|- ( ( ph /\ y e. Y ) -> y e. Y ) |
192 |
|
fvex |
|- ( N ` ( A M y ) ) e. _V |
193 |
|
eqid |
|- ( y e. Y |-> ( N ` ( A M y ) ) ) = ( y e. Y |-> ( N ` ( A M y ) ) ) |
194 |
193
|
elrnmpt1 |
|- ( ( y e. Y /\ ( N ` ( A M y ) ) e. _V ) -> ( N ` ( A M y ) ) e. ran ( y e. Y |-> ( N ` ( A M y ) ) ) ) |
195 |
191 192 194
|
sylancl |
|- ( ( ph /\ y e. Y ) -> ( N ` ( A M y ) ) e. ran ( y e. Y |-> ( N ` ( A M y ) ) ) ) |
196 |
195 10
|
eleqtrrdi |
|- ( ( ph /\ y e. Y ) -> ( N ` ( A M y ) ) e. R ) |
197 |
|
infrelb |
|- ( ( R C_ RR /\ E. x e. RR A. w e. R x <_ w /\ ( N ` ( A M y ) ) e. R ) -> inf ( R , RR , < ) <_ ( N ` ( A M y ) ) ) |
198 |
189 190 196 197
|
syl3anc |
|- ( ( ph /\ y e. Y ) -> inf ( R , RR , < ) <_ ( N ` ( A M y ) ) ) |
199 |
11 198
|
eqbrtrid |
|- ( ( ph /\ y e. Y ) -> S <_ ( N ` ( A M y ) ) ) |
200 |
62 64 71 188 199
|
letrd |
|- ( ( ph /\ y e. Y ) -> ( A D ( ( ~~>t ` J ) ` F ) ) <_ ( N ` ( A M y ) ) ) |
201 |
57 200
|
eqbrtrrd |
|- ( ( ph /\ y e. Y ) -> ( N ` ( A M ( ( ~~>t ` J ) ` F ) ) ) <_ ( N ` ( A M y ) ) ) |
202 |
201
|
ralrimiva |
|- ( ph -> A. y e. Y ( N ` ( A M ( ( ~~>t ` J ) ` F ) ) ) <_ ( N ` ( A M y ) ) ) |
203 |
|
oveq2 |
|- ( x = ( ( ~~>t ` J ) ` F ) -> ( A M x ) = ( A M ( ( ~~>t ` J ) ` F ) ) ) |
204 |
203
|
fveq2d |
|- ( x = ( ( ~~>t ` J ) ` F ) -> ( N ` ( A M x ) ) = ( N ` ( A M ( ( ~~>t ` J ) ` F ) ) ) ) |
205 |
204
|
breq1d |
|- ( x = ( ( ~~>t ` J ) ` F ) -> ( ( N ` ( A M x ) ) <_ ( N ` ( A M y ) ) <-> ( N ` ( A M ( ( ~~>t ` J ) ` F ) ) ) <_ ( N ` ( A M y ) ) ) ) |
206 |
205
|
ralbidv |
|- ( x = ( ( ~~>t ` J ) ` F ) -> ( A. y e. Y ( N ` ( A M x ) ) <_ ( N ` ( A M y ) ) <-> A. y e. Y ( N ` ( A M ( ( ~~>t ` J ) ` F ) ) ) <_ ( N ` ( A M y ) ) ) ) |
207 |
206
|
rspcev |
|- ( ( ( ( ~~>t ` J ) ` F ) e. Y /\ A. y e. Y ( N ` ( A M ( ( ~~>t ` J ) ` F ) ) ) <_ ( N ` ( A M y ) ) ) -> E. x e. Y A. y e. Y ( N ` ( A M x ) ) <_ ( N ` ( A M y ) ) ) |
208 |
53 202 207
|
syl2anc |
|- ( ph -> E. x e. Y A. y e. Y ( N ` ( A M x ) ) <_ ( N ` ( A M y ) ) ) |