Step |
Hyp |
Ref |
Expression |
1 |
|
minveco.x |
|- X = ( BaseSet ` U ) |
2 |
|
minveco.m |
|- M = ( -v ` U ) |
3 |
|
minveco.n |
|- N = ( normCV ` U ) |
4 |
|
minveco.y |
|- Y = ( BaseSet ` W ) |
5 |
|
minveco.u |
|- ( ph -> U e. CPreHilOLD ) |
6 |
|
minveco.w |
|- ( ph -> W e. ( ( SubSp ` U ) i^i CBan ) ) |
7 |
|
minveco.a |
|- ( ph -> A e. X ) |
8 |
|
minveco.d |
|- D = ( IndMet ` U ) |
9 |
|
minveco.j |
|- J = ( MetOpen ` D ) |
10 |
|
minveco.r |
|- R = ran ( y e. Y |-> ( N ` ( A M y ) ) ) |
11 |
|
minveco.s |
|- S = inf ( R , RR , < ) |
12 |
|
minveco.f |
|- ( ph -> F : NN --> Y ) |
13 |
|
minveco.1 |
|- ( ( ph /\ n e. NN ) -> ( ( A D ( F ` n ) ) ^ 2 ) <_ ( ( S ^ 2 ) + ( 1 / n ) ) ) |
14 |
1 2 3 4 5 6 7 8 9 10
|
minvecolem1 |
|- ( ph -> ( R C_ RR /\ R =/= (/) /\ A. w e. R 0 <_ w ) ) |
15 |
14
|
simp1d |
|- ( ph -> R C_ RR ) |
16 |
14
|
simp2d |
|- ( ph -> R =/= (/) ) |
17 |
|
0re |
|- 0 e. RR |
18 |
14
|
simp3d |
|- ( ph -> A. w e. R 0 <_ w ) |
19 |
|
breq1 |
|- ( x = 0 -> ( x <_ w <-> 0 <_ w ) ) |
20 |
19
|
ralbidv |
|- ( x = 0 -> ( A. w e. R x <_ w <-> A. w e. R 0 <_ w ) ) |
21 |
20
|
rspcev |
|- ( ( 0 e. RR /\ A. w e. R 0 <_ w ) -> E. x e. RR A. w e. R x <_ w ) |
22 |
17 18 21
|
sylancr |
|- ( ph -> E. x e. RR A. w e. R x <_ w ) |
23 |
|
infrecl |
|- ( ( R C_ RR /\ R =/= (/) /\ E. x e. RR A. w e. R x <_ w ) -> inf ( R , RR , < ) e. RR ) |
24 |
15 16 22 23
|
syl3anc |
|- ( ph -> inf ( R , RR , < ) e. RR ) |
25 |
11 24
|
eqeltrid |
|- ( ph -> S e. RR ) |