Step |
Hyp |
Ref |
Expression |
1 |
|
mirval.p |
|- P = ( Base ` G ) |
2 |
|
mirval.d |
|- .- = ( dist ` G ) |
3 |
|
mirval.i |
|- I = ( Itv ` G ) |
4 |
|
mirval.l |
|- L = ( LineG ` G ) |
5 |
|
mirval.s |
|- S = ( pInvG ` G ) |
6 |
|
mirval.g |
|- ( ph -> G e. TarskiG ) |
7 |
|
mirval.a |
|- ( ph -> A e. P ) |
8 |
|
mirfv.m |
|- M = ( S ` A ) |
9 |
|
mirfv.b |
|- ( ph -> B e. P ) |
10 |
1 2 3 4 5 6 7 8 9
|
mirfv |
|- ( ph -> ( M ` B ) = ( iota_ z e. P ( ( A .- z ) = ( A .- B ) /\ A e. ( z I B ) ) ) ) |
11 |
1 2 3 6 9 7
|
mirreu3 |
|- ( ph -> E! z e. P ( ( A .- z ) = ( A .- B ) /\ A e. ( z I B ) ) ) |
12 |
|
riotacl2 |
|- ( E! z e. P ( ( A .- z ) = ( A .- B ) /\ A e. ( z I B ) ) -> ( iota_ z e. P ( ( A .- z ) = ( A .- B ) /\ A e. ( z I B ) ) ) e. { z e. P | ( ( A .- z ) = ( A .- B ) /\ A e. ( z I B ) ) } ) |
13 |
11 12
|
syl |
|- ( ph -> ( iota_ z e. P ( ( A .- z ) = ( A .- B ) /\ A e. ( z I B ) ) ) e. { z e. P | ( ( A .- z ) = ( A .- B ) /\ A e. ( z I B ) ) } ) |
14 |
10 13
|
eqeltrd |
|- ( ph -> ( M ` B ) e. { z e. P | ( ( A .- z ) = ( A .- B ) /\ A e. ( z I B ) ) } ) |
15 |
|
oveq2 |
|- ( z = ( M ` B ) -> ( A .- z ) = ( A .- ( M ` B ) ) ) |
16 |
15
|
eqeq1d |
|- ( z = ( M ` B ) -> ( ( A .- z ) = ( A .- B ) <-> ( A .- ( M ` B ) ) = ( A .- B ) ) ) |
17 |
|
oveq1 |
|- ( z = ( M ` B ) -> ( z I B ) = ( ( M ` B ) I B ) ) |
18 |
17
|
eleq2d |
|- ( z = ( M ` B ) -> ( A e. ( z I B ) <-> A e. ( ( M ` B ) I B ) ) ) |
19 |
16 18
|
anbi12d |
|- ( z = ( M ` B ) -> ( ( ( A .- z ) = ( A .- B ) /\ A e. ( z I B ) ) <-> ( ( A .- ( M ` B ) ) = ( A .- B ) /\ A e. ( ( M ` B ) I B ) ) ) ) |
20 |
19
|
elrab |
|- ( ( M ` B ) e. { z e. P | ( ( A .- z ) = ( A .- B ) /\ A e. ( z I B ) ) } <-> ( ( M ` B ) e. P /\ ( ( A .- ( M ` B ) ) = ( A .- B ) /\ A e. ( ( M ` B ) I B ) ) ) ) |
21 |
14 20
|
sylib |
|- ( ph -> ( ( M ` B ) e. P /\ ( ( A .- ( M ` B ) ) = ( A .- B ) /\ A e. ( ( M ` B ) I B ) ) ) ) |
22 |
21
|
simprrd |
|- ( ph -> A e. ( ( M ` B ) I B ) ) |