| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mirval.p |
|- P = ( Base ` G ) |
| 2 |
|
mirval.d |
|- .- = ( dist ` G ) |
| 3 |
|
mirval.i |
|- I = ( Itv ` G ) |
| 4 |
|
mirval.l |
|- L = ( LineG ` G ) |
| 5 |
|
mirval.s |
|- S = ( pInvG ` G ) |
| 6 |
|
mirval.g |
|- ( ph -> G e. TarskiG ) |
| 7 |
|
mirtrcgr.e |
|- .~ = ( cgrG ` G ) |
| 8 |
|
mirtrcgr.m |
|- M = ( S ` B ) |
| 9 |
|
mirtrcgr.n |
|- N = ( S ` Y ) |
| 10 |
|
mirtrcgr.a |
|- ( ph -> A e. P ) |
| 11 |
|
mirtrcgr.b |
|- ( ph -> B e. P ) |
| 12 |
|
mirtrcgr.x |
|- ( ph -> X e. P ) |
| 13 |
|
mirtrcgr.y |
|- ( ph -> Y e. P ) |
| 14 |
|
mircgrextend.1 |
|- ( ph -> ( A .- B ) = ( X .- Y ) ) |
| 15 |
1 2 3 4 5 6 11 8 10
|
mircl |
|- ( ph -> ( M ` A ) e. P ) |
| 16 |
1 2 3 4 5 6 13 9 12
|
mircl |
|- ( ph -> ( N ` X ) e. P ) |
| 17 |
1 2 3 4 5 6 11 8 10
|
mirbtwn |
|- ( ph -> B e. ( ( M ` A ) I A ) ) |
| 18 |
1 2 3 6 15 11 10 17
|
tgbtwncom |
|- ( ph -> B e. ( A I ( M ` A ) ) ) |
| 19 |
1 2 3 4 5 6 13 9 12
|
mirbtwn |
|- ( ph -> Y e. ( ( N ` X ) I X ) ) |
| 20 |
1 2 3 6 16 13 12 19
|
tgbtwncom |
|- ( ph -> Y e. ( X I ( N ` X ) ) ) |
| 21 |
1 2 3 6 10 11 12 13 14
|
tgcgrcomlr |
|- ( ph -> ( B .- A ) = ( Y .- X ) ) |
| 22 |
1 2 3 4 5 6 11 8 10
|
mircgr |
|- ( ph -> ( B .- ( M ` A ) ) = ( B .- A ) ) |
| 23 |
1 2 3 4 5 6 13 9 12
|
mircgr |
|- ( ph -> ( Y .- ( N ` X ) ) = ( Y .- X ) ) |
| 24 |
21 22 23
|
3eqtr4d |
|- ( ph -> ( B .- ( M ` A ) ) = ( Y .- ( N ` X ) ) ) |
| 25 |
1 2 3 6 10 11 15 12 13 16 18 20 14 24
|
tgcgrextend |
|- ( ph -> ( A .- ( M ` A ) ) = ( X .- ( N ` X ) ) ) |