Metamath Proof Explorer


Theorem mircinv

Description: The center point is invariant of a point inversion. (Contributed by Thierry Arnoux, 25-Aug-2019)

Ref Expression
Hypotheses mirval.p
|- P = ( Base ` G )
mirval.d
|- .- = ( dist ` G )
mirval.i
|- I = ( Itv ` G )
mirval.l
|- L = ( LineG ` G )
mirval.s
|- S = ( pInvG ` G )
mirval.g
|- ( ph -> G e. TarskiG )
mirval.a
|- ( ph -> A e. P )
mirfv.m
|- M = ( S ` A )
Assertion mircinv
|- ( ph -> ( M ` A ) = A )

Proof

Step Hyp Ref Expression
1 mirval.p
 |-  P = ( Base ` G )
2 mirval.d
 |-  .- = ( dist ` G )
3 mirval.i
 |-  I = ( Itv ` G )
4 mirval.l
 |-  L = ( LineG ` G )
5 mirval.s
 |-  S = ( pInvG ` G )
6 mirval.g
 |-  ( ph -> G e. TarskiG )
7 mirval.a
 |-  ( ph -> A e. P )
8 mirfv.m
 |-  M = ( S ` A )
9 eqid
 |-  A = A
10 1 2 3 4 5 6 7 8 7 mirinv
 |-  ( ph -> ( ( M ` A ) = A <-> A = A ) )
11 9 10 mpbiri
 |-  ( ph -> ( M ` A ) = A )