Description: The center point is invariant of a point inversion. (Contributed by Thierry Arnoux, 25-Aug-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mirval.p | |- P = ( Base ` G ) |
|
mirval.d | |- .- = ( dist ` G ) |
||
mirval.i | |- I = ( Itv ` G ) |
||
mirval.l | |- L = ( LineG ` G ) |
||
mirval.s | |- S = ( pInvG ` G ) |
||
mirval.g | |- ( ph -> G e. TarskiG ) |
||
mirval.a | |- ( ph -> A e. P ) |
||
mirfv.m | |- M = ( S ` A ) |
||
Assertion | mircinv | |- ( ph -> ( M ` A ) = A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mirval.p | |- P = ( Base ` G ) |
|
2 | mirval.d | |- .- = ( dist ` G ) |
|
3 | mirval.i | |- I = ( Itv ` G ) |
|
4 | mirval.l | |- L = ( LineG ` G ) |
|
5 | mirval.s | |- S = ( pInvG ` G ) |
|
6 | mirval.g | |- ( ph -> G e. TarskiG ) |
|
7 | mirval.a | |- ( ph -> A e. P ) |
|
8 | mirfv.m | |- M = ( S ` A ) |
|
9 | eqid | |- A = A |
|
10 | 1 2 3 4 5 6 7 8 7 | mirinv | |- ( ph -> ( ( M ` A ) = A <-> A = A ) ) |
11 | 9 10 | mpbiri | |- ( ph -> ( M ` A ) = A ) |