Description: Closure of the point inversion function. (Contributed by Thierry Arnoux, 20-Oct-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mirval.p | |- P = ( Base ` G ) | |
| mirval.d | |- .- = ( dist ` G ) | ||
| mirval.i | |- I = ( Itv ` G ) | ||
| mirval.l | |- L = ( LineG ` G ) | ||
| mirval.s | |- S = ( pInvG ` G ) | ||
| mirval.g | |- ( ph -> G e. TarskiG ) | ||
| mirval.a | |- ( ph -> A e. P ) | ||
| mirfv.m | |- M = ( S ` A ) | ||
| mircl.x | |- ( ph -> X e. P ) | ||
| Assertion | mircl | |- ( ph -> ( M ` X ) e. P ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mirval.p | |- P = ( Base ` G ) | |
| 2 | mirval.d | |- .- = ( dist ` G ) | |
| 3 | mirval.i | |- I = ( Itv ` G ) | |
| 4 | mirval.l | |- L = ( LineG ` G ) | |
| 5 | mirval.s | |- S = ( pInvG ` G ) | |
| 6 | mirval.g | |- ( ph -> G e. TarskiG ) | |
| 7 | mirval.a | |- ( ph -> A e. P ) | |
| 8 | mirfv.m | |- M = ( S ` A ) | |
| 9 | mircl.x | |- ( ph -> X e. P ) | |
| 10 | 1 2 3 4 5 6 7 8 | mirf | |- ( ph -> M : P --> P ) | 
| 11 | 10 9 | ffvelcdmd | |- ( ph -> ( M ` X ) e. P ) |