Metamath Proof Explorer


Theorem mircl

Description: Closure of the point inversion function. (Contributed by Thierry Arnoux, 20-Oct-2019)

Ref Expression
Hypotheses mirval.p
|- P = ( Base ` G )
mirval.d
|- .- = ( dist ` G )
mirval.i
|- I = ( Itv ` G )
mirval.l
|- L = ( LineG ` G )
mirval.s
|- S = ( pInvG ` G )
mirval.g
|- ( ph -> G e. TarskiG )
mirval.a
|- ( ph -> A e. P )
mirfv.m
|- M = ( S ` A )
mircl.x
|- ( ph -> X e. P )
Assertion mircl
|- ( ph -> ( M ` X ) e. P )

Proof

Step Hyp Ref Expression
1 mirval.p
 |-  P = ( Base ` G )
2 mirval.d
 |-  .- = ( dist ` G )
3 mirval.i
 |-  I = ( Itv ` G )
4 mirval.l
 |-  L = ( LineG ` G )
5 mirval.s
 |-  S = ( pInvG ` G )
6 mirval.g
 |-  ( ph -> G e. TarskiG )
7 mirval.a
 |-  ( ph -> A e. P )
8 mirfv.m
 |-  M = ( S ` A )
9 mircl.x
 |-  ( ph -> X e. P )
10 1 2 3 4 5 6 7 8 mirf
 |-  ( ph -> M : P --> P )
11 10 9 ffvelrnd
 |-  ( ph -> ( M ` X ) e. P )