| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mirval.p |
|- P = ( Base ` G ) |
| 2 |
|
mirval.d |
|- .- = ( dist ` G ) |
| 3 |
|
mirval.i |
|- I = ( Itv ` G ) |
| 4 |
|
mirval.l |
|- L = ( LineG ` G ) |
| 5 |
|
mirval.s |
|- S = ( pInvG ` G ) |
| 6 |
|
mirval.g |
|- ( ph -> G e. TarskiG ) |
| 7 |
|
mirconn.m |
|- M = ( S ` A ) |
| 8 |
|
mirconn.a |
|- ( ph -> A e. P ) |
| 9 |
|
mirconn.x |
|- ( ph -> X e. P ) |
| 10 |
|
mirconn.y |
|- ( ph -> Y e. P ) |
| 11 |
|
mirconn.1 |
|- ( ph -> ( X e. ( A I Y ) \/ Y e. ( A I X ) ) ) |
| 12 |
6
|
adantr |
|- ( ( ph /\ X e. ( A I Y ) ) -> G e. TarskiG ) |
| 13 |
9
|
adantr |
|- ( ( ph /\ X e. ( A I Y ) ) -> X e. P ) |
| 14 |
8
|
adantr |
|- ( ( ph /\ X e. ( A I Y ) ) -> A e. P ) |
| 15 |
1 2 3 4 5 6 8 7 10
|
mircl |
|- ( ph -> ( M ` Y ) e. P ) |
| 16 |
15
|
adantr |
|- ( ( ph /\ X e. ( A I Y ) ) -> ( M ` Y ) e. P ) |
| 17 |
10
|
adantr |
|- ( ( ph /\ X e. ( A I Y ) ) -> Y e. P ) |
| 18 |
|
simpr |
|- ( ( ph /\ X e. ( A I Y ) ) -> X e. ( A I Y ) ) |
| 19 |
1 2 3 4 5 6 8 7 10
|
mirbtwn |
|- ( ph -> A e. ( ( M ` Y ) I Y ) ) |
| 20 |
19
|
adantr |
|- ( ( ph /\ X e. ( A I Y ) ) -> A e. ( ( M ` Y ) I Y ) ) |
| 21 |
1 2 3 12 13 14 16 17 18 20
|
tgbtwnintr |
|- ( ( ph /\ X e. ( A I Y ) ) -> A e. ( X I ( M ` Y ) ) ) |
| 22 |
1 2 3 6 9 8
|
tgbtwntriv2 |
|- ( ph -> A e. ( X I A ) ) |
| 23 |
22
|
adantr |
|- ( ( ph /\ Y = A ) -> A e. ( X I A ) ) |
| 24 |
|
simpr |
|- ( ( ph /\ Y = A ) -> Y = A ) |
| 25 |
24
|
fveq2d |
|- ( ( ph /\ Y = A ) -> ( M ` Y ) = ( M ` A ) ) |
| 26 |
1 2 3 4 5 6 8 7
|
mircinv |
|- ( ph -> ( M ` A ) = A ) |
| 27 |
26
|
adantr |
|- ( ( ph /\ Y = A ) -> ( M ` A ) = A ) |
| 28 |
25 27
|
eqtrd |
|- ( ( ph /\ Y = A ) -> ( M ` Y ) = A ) |
| 29 |
28
|
oveq2d |
|- ( ( ph /\ Y = A ) -> ( X I ( M ` Y ) ) = ( X I A ) ) |
| 30 |
23 29
|
eleqtrrd |
|- ( ( ph /\ Y = A ) -> A e. ( X I ( M ` Y ) ) ) |
| 31 |
30
|
adantlr |
|- ( ( ( ph /\ Y e. ( A I X ) ) /\ Y = A ) -> A e. ( X I ( M ` Y ) ) ) |
| 32 |
6
|
ad2antrr |
|- ( ( ( ph /\ Y e. ( A I X ) ) /\ Y =/= A ) -> G e. TarskiG ) |
| 33 |
9
|
ad2antrr |
|- ( ( ( ph /\ Y e. ( A I X ) ) /\ Y =/= A ) -> X e. P ) |
| 34 |
10
|
ad2antrr |
|- ( ( ( ph /\ Y e. ( A I X ) ) /\ Y =/= A ) -> Y e. P ) |
| 35 |
8
|
ad2antrr |
|- ( ( ( ph /\ Y e. ( A I X ) ) /\ Y =/= A ) -> A e. P ) |
| 36 |
15
|
ad2antrr |
|- ( ( ( ph /\ Y e. ( A I X ) ) /\ Y =/= A ) -> ( M ` Y ) e. P ) |
| 37 |
|
simpr |
|- ( ( ( ph /\ Y e. ( A I X ) ) /\ Y =/= A ) -> Y =/= A ) |
| 38 |
|
simplr |
|- ( ( ( ph /\ Y e. ( A I X ) ) /\ Y =/= A ) -> Y e. ( A I X ) ) |
| 39 |
1 2 3 32 35 34 33 38
|
tgbtwncom |
|- ( ( ( ph /\ Y e. ( A I X ) ) /\ Y =/= A ) -> Y e. ( X I A ) ) |
| 40 |
1 2 3 6 15 8 10 19
|
tgbtwncom |
|- ( ph -> A e. ( Y I ( M ` Y ) ) ) |
| 41 |
40
|
ad2antrr |
|- ( ( ( ph /\ Y e. ( A I X ) ) /\ Y =/= A ) -> A e. ( Y I ( M ` Y ) ) ) |
| 42 |
1 2 3 32 33 34 35 36 37 39 41
|
tgbtwnouttr2 |
|- ( ( ( ph /\ Y e. ( A I X ) ) /\ Y =/= A ) -> A e. ( X I ( M ` Y ) ) ) |
| 43 |
31 42
|
pm2.61dane |
|- ( ( ph /\ Y e. ( A I X ) ) -> A e. ( X I ( M ` Y ) ) ) |
| 44 |
21 43 11
|
mpjaodan |
|- ( ph -> A e. ( X I ( M ` Y ) ) ) |