| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mirval.p |
|- P = ( Base ` G ) |
| 2 |
|
mirval.d |
|- .- = ( dist ` G ) |
| 3 |
|
mirval.i |
|- I = ( Itv ` G ) |
| 4 |
|
mirval.l |
|- L = ( LineG ` G ) |
| 5 |
|
mirval.s |
|- S = ( pInvG ` G ) |
| 6 |
|
mirval.g |
|- ( ph -> G e. TarskiG ) |
| 7 |
|
mirval.a |
|- ( ph -> A e. P ) |
| 8 |
|
mirfv.m |
|- M = ( S ` A ) |
| 9 |
|
mirmir.b |
|- ( ph -> B e. P ) |
| 10 |
|
mireq.c |
|- ( ph -> C e. P ) |
| 11 |
|
mireq.d |
|- ( ph -> ( M ` B ) = ( M ` C ) ) |
| 12 |
1 2 3 4 5 6 7 8 10
|
mircl |
|- ( ph -> ( M ` C ) e. P ) |
| 13 |
1 2 3 4 5 6 7 8 9
|
mirfv |
|- ( ph -> ( M ` B ) = ( iota_ z e. P ( ( A .- z ) = ( A .- B ) /\ A e. ( z I B ) ) ) ) |
| 14 |
13 11
|
eqtr3d |
|- ( ph -> ( iota_ z e. P ( ( A .- z ) = ( A .- B ) /\ A e. ( z I B ) ) ) = ( M ` C ) ) |
| 15 |
1 2 3 6 9 7
|
mirreu3 |
|- ( ph -> E! z e. P ( ( A .- z ) = ( A .- B ) /\ A e. ( z I B ) ) ) |
| 16 |
|
oveq2 |
|- ( z = ( M ` C ) -> ( A .- z ) = ( A .- ( M ` C ) ) ) |
| 17 |
16
|
eqeq1d |
|- ( z = ( M ` C ) -> ( ( A .- z ) = ( A .- B ) <-> ( A .- ( M ` C ) ) = ( A .- B ) ) ) |
| 18 |
|
oveq1 |
|- ( z = ( M ` C ) -> ( z I B ) = ( ( M ` C ) I B ) ) |
| 19 |
18
|
eleq2d |
|- ( z = ( M ` C ) -> ( A e. ( z I B ) <-> A e. ( ( M ` C ) I B ) ) ) |
| 20 |
17 19
|
anbi12d |
|- ( z = ( M ` C ) -> ( ( ( A .- z ) = ( A .- B ) /\ A e. ( z I B ) ) <-> ( ( A .- ( M ` C ) ) = ( A .- B ) /\ A e. ( ( M ` C ) I B ) ) ) ) |
| 21 |
20
|
riota2 |
|- ( ( ( M ` C ) e. P /\ E! z e. P ( ( A .- z ) = ( A .- B ) /\ A e. ( z I B ) ) ) -> ( ( ( A .- ( M ` C ) ) = ( A .- B ) /\ A e. ( ( M ` C ) I B ) ) <-> ( iota_ z e. P ( ( A .- z ) = ( A .- B ) /\ A e. ( z I B ) ) ) = ( M ` C ) ) ) |
| 22 |
12 15 21
|
syl2anc |
|- ( ph -> ( ( ( A .- ( M ` C ) ) = ( A .- B ) /\ A e. ( ( M ` C ) I B ) ) <-> ( iota_ z e. P ( ( A .- z ) = ( A .- B ) /\ A e. ( z I B ) ) ) = ( M ` C ) ) ) |
| 23 |
14 22
|
mpbird |
|- ( ph -> ( ( A .- ( M ` C ) ) = ( A .- B ) /\ A e. ( ( M ` C ) I B ) ) ) |
| 24 |
23
|
simpld |
|- ( ph -> ( A .- ( M ` C ) ) = ( A .- B ) ) |
| 25 |
24
|
eqcomd |
|- ( ph -> ( A .- B ) = ( A .- ( M ` C ) ) ) |
| 26 |
23
|
simprd |
|- ( ph -> A e. ( ( M ` C ) I B ) ) |
| 27 |
1 2 3 6 12 7 9 26
|
tgbtwncom |
|- ( ph -> A e. ( B I ( M ` C ) ) ) |
| 28 |
1 2 3 4 5 6 7 8 12 9 25 27
|
ismir |
|- ( ph -> B = ( M ` ( M ` C ) ) ) |
| 29 |
1 2 3 4 5 6 7 8 10
|
mirmir |
|- ( ph -> ( M ` ( M ` C ) ) = C ) |
| 30 |
28 29
|
eqtrd |
|- ( ph -> B = C ) |