| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mirval.p |
|- P = ( Base ` G ) |
| 2 |
|
mirval.d |
|- .- = ( dist ` G ) |
| 3 |
|
mirval.i |
|- I = ( Itv ` G ) |
| 4 |
|
mirval.l |
|- L = ( LineG ` G ) |
| 5 |
|
mirval.s |
|- S = ( pInvG ` G ) |
| 6 |
|
mirval.g |
|- ( ph -> G e. TarskiG ) |
| 7 |
|
mirval.a |
|- ( ph -> A e. P ) |
| 8 |
|
mirfv.m |
|- M = ( S ` A ) |
| 9 |
|
riotaex |
|- ( iota_ z e. P ( ( A .- z ) = ( A .- y ) /\ A e. ( z I y ) ) ) e. _V |
| 10 |
9
|
a1i |
|- ( ( ph /\ y e. P ) -> ( iota_ z e. P ( ( A .- z ) = ( A .- y ) /\ A e. ( z I y ) ) ) e. _V ) |
| 11 |
1 2 3 4 5 6 7
|
mirval |
|- ( ph -> ( S ` A ) = ( y e. P |-> ( iota_ z e. P ( ( A .- z ) = ( A .- y ) /\ A e. ( z I y ) ) ) ) ) |
| 12 |
8 11
|
eqtrid |
|- ( ph -> M = ( y e. P |-> ( iota_ z e. P ( ( A .- z ) = ( A .- y ) /\ A e. ( z I y ) ) ) ) ) |
| 13 |
6
|
adantr |
|- ( ( ph /\ x e. P ) -> G e. TarskiG ) |
| 14 |
7
|
adantr |
|- ( ( ph /\ x e. P ) -> A e. P ) |
| 15 |
|
simpr |
|- ( ( ph /\ x e. P ) -> x e. P ) |
| 16 |
1 2 3 4 5 13 14 8 15
|
mirfv |
|- ( ( ph /\ x e. P ) -> ( M ` x ) = ( iota_ z e. P ( ( A .- z ) = ( A .- x ) /\ A e. ( z I x ) ) ) ) |
| 17 |
1 2 3 13 15 14
|
mirreu3 |
|- ( ( ph /\ x e. P ) -> E! z e. P ( ( A .- z ) = ( A .- x ) /\ A e. ( z I x ) ) ) |
| 18 |
|
riotacl |
|- ( E! z e. P ( ( A .- z ) = ( A .- x ) /\ A e. ( z I x ) ) -> ( iota_ z e. P ( ( A .- z ) = ( A .- x ) /\ A e. ( z I x ) ) ) e. P ) |
| 19 |
17 18
|
syl |
|- ( ( ph /\ x e. P ) -> ( iota_ z e. P ( ( A .- z ) = ( A .- x ) /\ A e. ( z I x ) ) ) e. P ) |
| 20 |
16 19
|
eqeltrd |
|- ( ( ph /\ x e. P ) -> ( M ` x ) e. P ) |
| 21 |
10 12 20
|
fmpt2d |
|- ( ph -> M : P --> P ) |