| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mirval.p |
|- P = ( Base ` G ) |
| 2 |
|
mirval.d |
|- .- = ( dist ` G ) |
| 3 |
|
mirval.i |
|- I = ( Itv ` G ) |
| 4 |
|
mirval.l |
|- L = ( LineG ` G ) |
| 5 |
|
mirval.s |
|- S = ( pInvG ` G ) |
| 6 |
|
mirval.g |
|- ( ph -> G e. TarskiG ) |
| 7 |
|
mirval.a |
|- ( ph -> A e. P ) |
| 8 |
|
mirfv.m |
|- M = ( S ` A ) |
| 9 |
1 2 3 4 5 6 7 8
|
mirf |
|- ( ph -> M : P --> P ) |
| 10 |
9
|
ffnd |
|- ( ph -> M Fn P ) |
| 11 |
6
|
adantr |
|- ( ( ph /\ a e. P ) -> G e. TarskiG ) |
| 12 |
7
|
adantr |
|- ( ( ph /\ a e. P ) -> A e. P ) |
| 13 |
|
simpr |
|- ( ( ph /\ a e. P ) -> a e. P ) |
| 14 |
1 2 3 4 5 11 12 8 13
|
mirmir |
|- ( ( ph /\ a e. P ) -> ( M ` ( M ` a ) ) = a ) |
| 15 |
14
|
ralrimiva |
|- ( ph -> A. a e. P ( M ` ( M ` a ) ) = a ) |
| 16 |
|
nvocnv |
|- ( ( M : P --> P /\ A. a e. P ( M ` ( M ` a ) ) = a ) -> `' M = M ) |
| 17 |
9 15 16
|
syl2anc |
|- ( ph -> `' M = M ) |
| 18 |
|
nvof1o |
|- ( ( M Fn P /\ `' M = M ) -> M : P -1-1-onto-> P ) |
| 19 |
10 17 18
|
syl2anc |
|- ( ph -> M : P -1-1-onto-> P ) |