| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mirval.p |
|- P = ( Base ` G ) |
| 2 |
|
mirval.d |
|- .- = ( dist ` G ) |
| 3 |
|
mirval.i |
|- I = ( Itv ` G ) |
| 4 |
|
mirval.l |
|- L = ( LineG ` G ) |
| 5 |
|
mirval.s |
|- S = ( pInvG ` G ) |
| 6 |
|
mirval.g |
|- ( ph -> G e. TarskiG ) |
| 7 |
|
mirval.a |
|- ( ph -> A e. P ) |
| 8 |
|
mirfv.m |
|- M = ( S ` A ) |
| 9 |
|
mirfv.b |
|- ( ph -> B e. P ) |
| 10 |
1 2 3 4 5 6 7
|
mirval |
|- ( ph -> ( S ` A ) = ( y e. P |-> ( iota_ z e. P ( ( A .- z ) = ( A .- y ) /\ A e. ( z I y ) ) ) ) ) |
| 11 |
8 10
|
eqtrid |
|- ( ph -> M = ( y e. P |-> ( iota_ z e. P ( ( A .- z ) = ( A .- y ) /\ A e. ( z I y ) ) ) ) ) |
| 12 |
|
simplr |
|- ( ( ( ph /\ y = B ) /\ z e. P ) -> y = B ) |
| 13 |
12
|
oveq2d |
|- ( ( ( ph /\ y = B ) /\ z e. P ) -> ( A .- y ) = ( A .- B ) ) |
| 14 |
13
|
eqeq2d |
|- ( ( ( ph /\ y = B ) /\ z e. P ) -> ( ( A .- z ) = ( A .- y ) <-> ( A .- z ) = ( A .- B ) ) ) |
| 15 |
12
|
oveq2d |
|- ( ( ( ph /\ y = B ) /\ z e. P ) -> ( z I y ) = ( z I B ) ) |
| 16 |
15
|
eleq2d |
|- ( ( ( ph /\ y = B ) /\ z e. P ) -> ( A e. ( z I y ) <-> A e. ( z I B ) ) ) |
| 17 |
14 16
|
anbi12d |
|- ( ( ( ph /\ y = B ) /\ z e. P ) -> ( ( ( A .- z ) = ( A .- y ) /\ A e. ( z I y ) ) <-> ( ( A .- z ) = ( A .- B ) /\ A e. ( z I B ) ) ) ) |
| 18 |
17
|
riotabidva |
|- ( ( ph /\ y = B ) -> ( iota_ z e. P ( ( A .- z ) = ( A .- y ) /\ A e. ( z I y ) ) ) = ( iota_ z e. P ( ( A .- z ) = ( A .- B ) /\ A e. ( z I B ) ) ) ) |
| 19 |
|
riotaex |
|- ( iota_ z e. P ( ( A .- z ) = ( A .- B ) /\ A e. ( z I B ) ) ) e. _V |
| 20 |
19
|
a1i |
|- ( ph -> ( iota_ z e. P ( ( A .- z ) = ( A .- B ) /\ A e. ( z I B ) ) ) e. _V ) |
| 21 |
11 18 9 20
|
fvmptd |
|- ( ph -> ( M ` B ) = ( iota_ z e. P ( ( A .- z ) = ( A .- B ) /\ A e. ( z I B ) ) ) ) |