Step |
Hyp |
Ref |
Expression |
1 |
|
mirval.p |
|- P = ( Base ` G ) |
2 |
|
mirval.d |
|- .- = ( dist ` G ) |
3 |
|
mirval.i |
|- I = ( Itv ` G ) |
4 |
|
mirval.l |
|- L = ( LineG ` G ) |
5 |
|
mirval.s |
|- S = ( pInvG ` G ) |
6 |
|
mirval.g |
|- ( ph -> G e. TarskiG ) |
7 |
|
mirhl.m |
|- M = ( S ` A ) |
8 |
|
mirhl.k |
|- K = ( hlG ` G ) |
9 |
|
mirhl.a |
|- ( ph -> A e. P ) |
10 |
|
mirhl.x |
|- ( ph -> X e. P ) |
11 |
|
mirhl.y |
|- ( ph -> Y e. P ) |
12 |
|
mirhl.z |
|- ( ph -> Z e. P ) |
13 |
|
mirhl2.1 |
|- ( ph -> X =/= A ) |
14 |
|
mirhl2.2 |
|- ( ph -> Y =/= A ) |
15 |
|
mirhl2.3 |
|- ( ph -> A e. ( X I ( M ` Y ) ) ) |
16 |
1 2 3 4 5 6 9 7 11
|
mircl |
|- ( ph -> ( M ` Y ) e. P ) |
17 |
1 2 3 4 5 6 9 7 11 14
|
mirne |
|- ( ph -> ( M ` Y ) =/= A ) |
18 |
1 2 3 6 10 9 16 15
|
tgbtwncom |
|- ( ph -> A e. ( ( M ` Y ) I X ) ) |
19 |
1 2 3 4 5 6 9 7 11
|
mirbtwn |
|- ( ph -> A e. ( ( M ` Y ) I Y ) ) |
20 |
1 3 6 16 9 10 11 17 18 19
|
tgbtwnconn2 |
|- ( ph -> ( X e. ( A I Y ) \/ Y e. ( A I X ) ) ) |
21 |
1 3 8 10 11 9 6
|
ishlg |
|- ( ph -> ( X ( K ` A ) Y <-> ( X =/= A /\ Y =/= A /\ ( X e. ( A I Y ) \/ Y e. ( A I X ) ) ) ) ) |
22 |
13 14 20 21
|
mpbir3and |
|- ( ph -> X ( K ` A ) Y ) |