| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mirval.p |
|- P = ( Base ` G ) |
| 2 |
|
mirval.d |
|- .- = ( dist ` G ) |
| 3 |
|
mirval.i |
|- I = ( Itv ` G ) |
| 4 |
|
mirval.l |
|- L = ( LineG ` G ) |
| 5 |
|
mirval.s |
|- S = ( pInvG ` G ) |
| 6 |
|
mirval.g |
|- ( ph -> G e. TarskiG ) |
| 7 |
|
mirval.a |
|- ( ph -> A e. P ) |
| 8 |
|
mirfv.m |
|- M = ( S ` A ) |
| 9 |
|
mirinv.b |
|- ( ph -> B e. P ) |
| 10 |
6
|
adantr |
|- ( ( ph /\ ( M ` B ) = B ) -> G e. TarskiG ) |
| 11 |
9
|
adantr |
|- ( ( ph /\ ( M ` B ) = B ) -> B e. P ) |
| 12 |
7
|
adantr |
|- ( ( ph /\ ( M ` B ) = B ) -> A e. P ) |
| 13 |
1 2 3 4 5 10 12 8 11
|
mirbtwn |
|- ( ( ph /\ ( M ` B ) = B ) -> A e. ( ( M ` B ) I B ) ) |
| 14 |
|
simpr |
|- ( ( ph /\ ( M ` B ) = B ) -> ( M ` B ) = B ) |
| 15 |
14
|
oveq1d |
|- ( ( ph /\ ( M ` B ) = B ) -> ( ( M ` B ) I B ) = ( B I B ) ) |
| 16 |
13 15
|
eleqtrd |
|- ( ( ph /\ ( M ` B ) = B ) -> A e. ( B I B ) ) |
| 17 |
1 2 3 10 11 12 16
|
axtgbtwnid |
|- ( ( ph /\ ( M ` B ) = B ) -> B = A ) |
| 18 |
17
|
eqcomd |
|- ( ( ph /\ ( M ` B ) = B ) -> A = B ) |
| 19 |
6
|
adantr |
|- ( ( ph /\ A = B ) -> G e. TarskiG ) |
| 20 |
7
|
adantr |
|- ( ( ph /\ A = B ) -> A e. P ) |
| 21 |
9
|
adantr |
|- ( ( ph /\ A = B ) -> B e. P ) |
| 22 |
|
eqidd |
|- ( ( ph /\ A = B ) -> ( A .- B ) = ( A .- B ) ) |
| 23 |
|
simpr |
|- ( ( ph /\ A = B ) -> A = B ) |
| 24 |
1 2 3 19 21 21
|
tgbtwntriv1 |
|- ( ( ph /\ A = B ) -> B e. ( B I B ) ) |
| 25 |
23 24
|
eqeltrd |
|- ( ( ph /\ A = B ) -> A e. ( B I B ) ) |
| 26 |
1 2 3 4 5 19 20 8 21 21 22 25
|
ismir |
|- ( ( ph /\ A = B ) -> B = ( M ` B ) ) |
| 27 |
26
|
eqcomd |
|- ( ( ph /\ A = B ) -> ( M ` B ) = B ) |
| 28 |
18 27
|
impbida |
|- ( ph -> ( ( M ` B ) = B <-> A = B ) ) |