| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mirval.p |
|- P = ( Base ` G ) |
| 2 |
|
mirval.d |
|- .- = ( dist ` G ) |
| 3 |
|
mirval.i |
|- I = ( Itv ` G ) |
| 4 |
|
mirval.l |
|- L = ( LineG ` G ) |
| 5 |
|
mirval.s |
|- S = ( pInvG ` G ) |
| 6 |
|
mirval.g |
|- ( ph -> G e. TarskiG ) |
| 7 |
|
mirln.m |
|- M = ( S ` A ) |
| 8 |
|
mirln.1 |
|- ( ph -> D e. ran L ) |
| 9 |
|
mirln.a |
|- ( ph -> A e. D ) |
| 10 |
|
mirln.b |
|- ( ph -> B e. D ) |
| 11 |
|
simpr |
|- ( ( ph /\ A = B ) -> A = B ) |
| 12 |
11
|
fveq2d |
|- ( ( ph /\ A = B ) -> ( M ` A ) = ( M ` B ) ) |
| 13 |
6
|
adantr |
|- ( ( ph /\ A = B ) -> G e. TarskiG ) |
| 14 |
1 4 3 6 8 9
|
tglnpt |
|- ( ph -> A e. P ) |
| 15 |
14
|
adantr |
|- ( ( ph /\ A = B ) -> A e. P ) |
| 16 |
1 2 3 4 5 13 15 7
|
mircinv |
|- ( ( ph /\ A = B ) -> ( M ` A ) = A ) |
| 17 |
12 16
|
eqtr3d |
|- ( ( ph /\ A = B ) -> ( M ` B ) = A ) |
| 18 |
9
|
adantr |
|- ( ( ph /\ A = B ) -> A e. D ) |
| 19 |
17 18
|
eqeltrd |
|- ( ( ph /\ A = B ) -> ( M ` B ) e. D ) |
| 20 |
6
|
adantr |
|- ( ( ph /\ A =/= B ) -> G e. TarskiG ) |
| 21 |
14
|
adantr |
|- ( ( ph /\ A =/= B ) -> A e. P ) |
| 22 |
1 4 3 6 8 10
|
tglnpt |
|- ( ph -> B e. P ) |
| 23 |
22
|
adantr |
|- ( ( ph /\ A =/= B ) -> B e. P ) |
| 24 |
1 2 3 4 5 20 21 7 23
|
mircl |
|- ( ( ph /\ A =/= B ) -> ( M ` B ) e. P ) |
| 25 |
|
simpr |
|- ( ( ph /\ A =/= B ) -> A =/= B ) |
| 26 |
1 2 3 4 5 6 14 7 22
|
mirbtwn |
|- ( ph -> A e. ( ( M ` B ) I B ) ) |
| 27 |
26
|
adantr |
|- ( ( ph /\ A =/= B ) -> A e. ( ( M ` B ) I B ) ) |
| 28 |
1 3 4 20 21 23 24 25 27
|
btwnlng2 |
|- ( ( ph /\ A =/= B ) -> ( M ` B ) e. ( A L B ) ) |
| 29 |
8
|
adantr |
|- ( ( ph /\ A =/= B ) -> D e. ran L ) |
| 30 |
9
|
adantr |
|- ( ( ph /\ A =/= B ) -> A e. D ) |
| 31 |
10
|
adantr |
|- ( ( ph /\ A =/= B ) -> B e. D ) |
| 32 |
1 3 4 20 21 23 25 25 29 30 31
|
tglinethru |
|- ( ( ph /\ A =/= B ) -> D = ( A L B ) ) |
| 33 |
28 32
|
eleqtrrd |
|- ( ( ph /\ A =/= B ) -> ( M ` B ) e. D ) |
| 34 |
19 33
|
pm2.61dane |
|- ( ph -> ( M ` B ) e. D ) |