Step |
Hyp |
Ref |
Expression |
1 |
|
mirval.p |
|- P = ( Base ` G ) |
2 |
|
mirval.d |
|- .- = ( dist ` G ) |
3 |
|
mirval.i |
|- I = ( Itv ` G ) |
4 |
|
mirval.l |
|- L = ( LineG ` G ) |
5 |
|
mirval.s |
|- S = ( pInvG ` G ) |
6 |
|
mirval.g |
|- ( ph -> G e. TarskiG ) |
7 |
|
mirln2.m |
|- M = ( S ` A ) |
8 |
|
mirln2.d |
|- ( ph -> D e. ran L ) |
9 |
|
mirln2.a |
|- ( ph -> A e. P ) |
10 |
|
mirln2.1 |
|- ( ph -> B e. D ) |
11 |
|
mirln2.2 |
|- ( ph -> ( M ` B ) e. D ) |
12 |
1 4 3 6 8 10
|
tglnpt |
|- ( ph -> B e. P ) |
13 |
1 2 3 4 5 6 9 7 12
|
mirinv |
|- ( ph -> ( ( M ` B ) = B <-> A = B ) ) |
14 |
13
|
biimpa |
|- ( ( ph /\ ( M ` B ) = B ) -> A = B ) |
15 |
10
|
adantr |
|- ( ( ph /\ ( M ` B ) = B ) -> B e. D ) |
16 |
14 15
|
eqeltrd |
|- ( ( ph /\ ( M ` B ) = B ) -> A e. D ) |
17 |
6
|
adantr |
|- ( ( ph /\ ( M ` B ) =/= B ) -> G e. TarskiG ) |
18 |
1 4 3 6 8 11
|
tglnpt |
|- ( ph -> ( M ` B ) e. P ) |
19 |
18
|
adantr |
|- ( ( ph /\ ( M ` B ) =/= B ) -> ( M ` B ) e. P ) |
20 |
12
|
adantr |
|- ( ( ph /\ ( M ` B ) =/= B ) -> B e. P ) |
21 |
9
|
adantr |
|- ( ( ph /\ ( M ` B ) =/= B ) -> A e. P ) |
22 |
|
simpr |
|- ( ( ph /\ ( M ` B ) =/= B ) -> ( M ` B ) =/= B ) |
23 |
1 2 3 4 5 17 21 7 20
|
mirbtwn |
|- ( ( ph /\ ( M ` B ) =/= B ) -> A e. ( ( M ` B ) I B ) ) |
24 |
1 3 4 17 19 20 21 22 23
|
btwnlng1 |
|- ( ( ph /\ ( M ` B ) =/= B ) -> A e. ( ( M ` B ) L B ) ) |
25 |
8
|
adantr |
|- ( ( ph /\ ( M ` B ) =/= B ) -> D e. ran L ) |
26 |
11
|
adantr |
|- ( ( ph /\ ( M ` B ) =/= B ) -> ( M ` B ) e. D ) |
27 |
10
|
adantr |
|- ( ( ph /\ ( M ` B ) =/= B ) -> B e. D ) |
28 |
1 3 4 17 19 20 22 22 25 26 27
|
tglinethru |
|- ( ( ph /\ ( M ` B ) =/= B ) -> D = ( ( M ` B ) L B ) ) |
29 |
24 28
|
eleqtrrd |
|- ( ( ph /\ ( M ` B ) =/= B ) -> A e. D ) |
30 |
16 29
|
pm2.61dane |
|- ( ph -> A e. D ) |