| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mirval.p |
|- P = ( Base ` G ) |
| 2 |
|
mirval.d |
|- .- = ( dist ` G ) |
| 3 |
|
mirval.i |
|- I = ( Itv ` G ) |
| 4 |
|
mirval.l |
|- L = ( LineG ` G ) |
| 5 |
|
mirval.s |
|- S = ( pInvG ` G ) |
| 6 |
|
mirval.g |
|- ( ph -> G e. TarskiG ) |
| 7 |
|
mirln2.m |
|- M = ( S ` A ) |
| 8 |
|
mirln2.d |
|- ( ph -> D e. ran L ) |
| 9 |
|
mirln2.a |
|- ( ph -> A e. P ) |
| 10 |
|
mirln2.1 |
|- ( ph -> B e. D ) |
| 11 |
|
mirln2.2 |
|- ( ph -> ( M ` B ) e. D ) |
| 12 |
1 4 3 6 8 10
|
tglnpt |
|- ( ph -> B e. P ) |
| 13 |
1 2 3 4 5 6 9 7 12
|
mirinv |
|- ( ph -> ( ( M ` B ) = B <-> A = B ) ) |
| 14 |
13
|
biimpa |
|- ( ( ph /\ ( M ` B ) = B ) -> A = B ) |
| 15 |
10
|
adantr |
|- ( ( ph /\ ( M ` B ) = B ) -> B e. D ) |
| 16 |
14 15
|
eqeltrd |
|- ( ( ph /\ ( M ` B ) = B ) -> A e. D ) |
| 17 |
6
|
adantr |
|- ( ( ph /\ ( M ` B ) =/= B ) -> G e. TarskiG ) |
| 18 |
1 4 3 6 8 11
|
tglnpt |
|- ( ph -> ( M ` B ) e. P ) |
| 19 |
18
|
adantr |
|- ( ( ph /\ ( M ` B ) =/= B ) -> ( M ` B ) e. P ) |
| 20 |
12
|
adantr |
|- ( ( ph /\ ( M ` B ) =/= B ) -> B e. P ) |
| 21 |
9
|
adantr |
|- ( ( ph /\ ( M ` B ) =/= B ) -> A e. P ) |
| 22 |
|
simpr |
|- ( ( ph /\ ( M ` B ) =/= B ) -> ( M ` B ) =/= B ) |
| 23 |
1 2 3 4 5 17 21 7 20
|
mirbtwn |
|- ( ( ph /\ ( M ` B ) =/= B ) -> A e. ( ( M ` B ) I B ) ) |
| 24 |
1 3 4 17 19 20 21 22 23
|
btwnlng1 |
|- ( ( ph /\ ( M ` B ) =/= B ) -> A e. ( ( M ` B ) L B ) ) |
| 25 |
8
|
adantr |
|- ( ( ph /\ ( M ` B ) =/= B ) -> D e. ran L ) |
| 26 |
11
|
adantr |
|- ( ( ph /\ ( M ` B ) =/= B ) -> ( M ` B ) e. D ) |
| 27 |
10
|
adantr |
|- ( ( ph /\ ( M ` B ) =/= B ) -> B e. D ) |
| 28 |
1 3 4 17 19 20 22 22 25 26 27
|
tglinethru |
|- ( ( ph /\ ( M ` B ) =/= B ) -> D = ( ( M ` B ) L B ) ) |
| 29 |
24 28
|
eleqtrrd |
|- ( ( ph /\ ( M ` B ) =/= B ) -> A e. D ) |
| 30 |
16 29
|
pm2.61dane |
|- ( ph -> A e. D ) |