Metamath Proof Explorer


Theorem mirmot

Description: Point investion is a motion of the geometric space. Theorem 7.14 of Schwabhauser p. 51. (Contributed by Thierry Arnoux, 15-Dec-2019)

Ref Expression
Hypotheses mirval.p
|- P = ( Base ` G )
mirval.d
|- .- = ( dist ` G )
mirval.i
|- I = ( Itv ` G )
mirval.l
|- L = ( LineG ` G )
mirval.s
|- S = ( pInvG ` G )
mirval.g
|- ( ph -> G e. TarskiG )
mirmot.m
|- M = ( S ` A )
mirmot.a
|- ( ph -> A e. P )
Assertion mirmot
|- ( ph -> M e. ( G Ismt G ) )

Proof

Step Hyp Ref Expression
1 mirval.p
 |-  P = ( Base ` G )
2 mirval.d
 |-  .- = ( dist ` G )
3 mirval.i
 |-  I = ( Itv ` G )
4 mirval.l
 |-  L = ( LineG ` G )
5 mirval.s
 |-  S = ( pInvG ` G )
6 mirval.g
 |-  ( ph -> G e. TarskiG )
7 mirmot.m
 |-  M = ( S ` A )
8 mirmot.a
 |-  ( ph -> A e. P )
9 1 2 3 4 5 6 8 7 mirf1o
 |-  ( ph -> M : P -1-1-onto-> P )
10 6 adantr
 |-  ( ( ph /\ ( a e. P /\ b e. P ) ) -> G e. TarskiG )
11 8 adantr
 |-  ( ( ph /\ ( a e. P /\ b e. P ) ) -> A e. P )
12 simprl
 |-  ( ( ph /\ ( a e. P /\ b e. P ) ) -> a e. P )
13 simprr
 |-  ( ( ph /\ ( a e. P /\ b e. P ) ) -> b e. P )
14 1 2 3 4 5 10 11 7 12 13 miriso
 |-  ( ( ph /\ ( a e. P /\ b e. P ) ) -> ( ( M ` a ) .- ( M ` b ) ) = ( a .- b ) )
15 14 ralrimivva
 |-  ( ph -> A. a e. P A. b e. P ( ( M ` a ) .- ( M ` b ) ) = ( a .- b ) )
16 1 2 ismot
 |-  ( G e. TarskiG -> ( M e. ( G Ismt G ) <-> ( M : P -1-1-onto-> P /\ A. a e. P A. b e. P ( ( M ` a ) .- ( M ` b ) ) = ( a .- b ) ) ) )
17 6 16 syl
 |-  ( ph -> ( M e. ( G Ismt G ) <-> ( M : P -1-1-onto-> P /\ A. a e. P A. b e. P ( ( M ` a ) .- ( M ` b ) ) = ( a .- b ) ) ) )
18 9 15 17 mpbir2and
 |-  ( ph -> M e. ( G Ismt G ) )