Step |
Hyp |
Ref |
Expression |
1 |
|
mirval.p |
|- P = ( Base ` G ) |
2 |
|
mirval.d |
|- .- = ( dist ` G ) |
3 |
|
mirval.i |
|- I = ( Itv ` G ) |
4 |
|
mirval.l |
|- L = ( LineG ` G ) |
5 |
|
mirval.s |
|- S = ( pInvG ` G ) |
6 |
|
mirval.g |
|- ( ph -> G e. TarskiG ) |
7 |
|
mirval.a |
|- ( ph -> A e. P ) |
8 |
|
mirfv.m |
|- M = ( S ` A ) |
9 |
|
mirinv.b |
|- ( ph -> B e. P ) |
10 |
|
mirne.1 |
|- ( ph -> B =/= A ) |
11 |
|
simpr |
|- ( ( ph /\ ( M ` B ) = A ) -> ( M ` B ) = A ) |
12 |
11
|
fveq2d |
|- ( ( ph /\ ( M ` B ) = A ) -> ( M ` ( M ` B ) ) = ( M ` A ) ) |
13 |
1 2 3 4 5 6 7 8 9
|
mirmir |
|- ( ph -> ( M ` ( M ` B ) ) = B ) |
14 |
13
|
adantr |
|- ( ( ph /\ ( M ` B ) = A ) -> ( M ` ( M ` B ) ) = B ) |
15 |
|
eqid |
|- A = A |
16 |
1 2 3 4 5 6 7 8 7
|
mirinv |
|- ( ph -> ( ( M ` A ) = A <-> A = A ) ) |
17 |
15 16
|
mpbiri |
|- ( ph -> ( M ` A ) = A ) |
18 |
17
|
adantr |
|- ( ( ph /\ ( M ` B ) = A ) -> ( M ` A ) = A ) |
19 |
12 14 18
|
3eqtr3d |
|- ( ( ph /\ ( M ` B ) = A ) -> B = A ) |
20 |
10
|
adantr |
|- ( ( ph /\ ( M ` B ) = A ) -> B =/= A ) |
21 |
20
|
neneqd |
|- ( ( ph /\ ( M ` B ) = A ) -> -. B = A ) |
22 |
19 21
|
pm2.65da |
|- ( ph -> -. ( M ` B ) = A ) |
23 |
22
|
neqned |
|- ( ph -> ( M ` B ) =/= A ) |