Metamath Proof Explorer


Theorem mirne

Description: Mirror of non-center point cannot be the center point. (Contributed by Thierry Arnoux, 27-Sep-2020)

Ref Expression
Hypotheses mirval.p
|- P = ( Base ` G )
mirval.d
|- .- = ( dist ` G )
mirval.i
|- I = ( Itv ` G )
mirval.l
|- L = ( LineG ` G )
mirval.s
|- S = ( pInvG ` G )
mirval.g
|- ( ph -> G e. TarskiG )
mirval.a
|- ( ph -> A e. P )
mirfv.m
|- M = ( S ` A )
mirinv.b
|- ( ph -> B e. P )
mirne.1
|- ( ph -> B =/= A )
Assertion mirne
|- ( ph -> ( M ` B ) =/= A )

Proof

Step Hyp Ref Expression
1 mirval.p
 |-  P = ( Base ` G )
2 mirval.d
 |-  .- = ( dist ` G )
3 mirval.i
 |-  I = ( Itv ` G )
4 mirval.l
 |-  L = ( LineG ` G )
5 mirval.s
 |-  S = ( pInvG ` G )
6 mirval.g
 |-  ( ph -> G e. TarskiG )
7 mirval.a
 |-  ( ph -> A e. P )
8 mirfv.m
 |-  M = ( S ` A )
9 mirinv.b
 |-  ( ph -> B e. P )
10 mirne.1
 |-  ( ph -> B =/= A )
11 simpr
 |-  ( ( ph /\ ( M ` B ) = A ) -> ( M ` B ) = A )
12 11 fveq2d
 |-  ( ( ph /\ ( M ` B ) = A ) -> ( M ` ( M ` B ) ) = ( M ` A ) )
13 1 2 3 4 5 6 7 8 9 mirmir
 |-  ( ph -> ( M ` ( M ` B ) ) = B )
14 13 adantr
 |-  ( ( ph /\ ( M ` B ) = A ) -> ( M ` ( M ` B ) ) = B )
15 eqid
 |-  A = A
16 1 2 3 4 5 6 7 8 7 mirinv
 |-  ( ph -> ( ( M ` A ) = A <-> A = A ) )
17 15 16 mpbiri
 |-  ( ph -> ( M ` A ) = A )
18 17 adantr
 |-  ( ( ph /\ ( M ` B ) = A ) -> ( M ` A ) = A )
19 12 14 18 3eqtr3d
 |-  ( ( ph /\ ( M ` B ) = A ) -> B = A )
20 10 adantr
 |-  ( ( ph /\ ( M ` B ) = A ) -> B =/= A )
21 20 neneqd
 |-  ( ( ph /\ ( M ` B ) = A ) -> -. B = A )
22 19 21 pm2.65da
 |-  ( ph -> -. ( M ` B ) = A )
23 22 neqned
 |-  ( ph -> ( M ` B ) =/= A )