Metamath Proof Explorer


Theorem mirreu

Description: Any point has a unique antecedent through point inversion. Theorem 7.8 of Schwabhauser p. 50. (Contributed by Thierry Arnoux, 3-Jun-2019)

Ref Expression
Hypotheses mirval.p
|- P = ( Base ` G )
mirval.d
|- .- = ( dist ` G )
mirval.i
|- I = ( Itv ` G )
mirval.l
|- L = ( LineG ` G )
mirval.s
|- S = ( pInvG ` G )
mirval.g
|- ( ph -> G e. TarskiG )
mirval.a
|- ( ph -> A e. P )
mirfv.m
|- M = ( S ` A )
mirmir.b
|- ( ph -> B e. P )
Assertion mirreu
|- ( ph -> E! a e. P ( M ` a ) = B )

Proof

Step Hyp Ref Expression
1 mirval.p
 |-  P = ( Base ` G )
2 mirval.d
 |-  .- = ( dist ` G )
3 mirval.i
 |-  I = ( Itv ` G )
4 mirval.l
 |-  L = ( LineG ` G )
5 mirval.s
 |-  S = ( pInvG ` G )
6 mirval.g
 |-  ( ph -> G e. TarskiG )
7 mirval.a
 |-  ( ph -> A e. P )
8 mirfv.m
 |-  M = ( S ` A )
9 mirmir.b
 |-  ( ph -> B e. P )
10 1 2 3 4 5 6 7 8 9 mircl
 |-  ( ph -> ( M ` B ) e. P )
11 1 2 3 4 5 6 7 8 9 mirmir
 |-  ( ph -> ( M ` ( M ` B ) ) = B )
12 6 ad2antrr
 |-  ( ( ( ph /\ a e. P ) /\ ( M ` a ) = B ) -> G e. TarskiG )
13 7 ad2antrr
 |-  ( ( ( ph /\ a e. P ) /\ ( M ` a ) = B ) -> A e. P )
14 simplr
 |-  ( ( ( ph /\ a e. P ) /\ ( M ` a ) = B ) -> a e. P )
15 1 2 3 4 5 12 13 8 14 mirmir
 |-  ( ( ( ph /\ a e. P ) /\ ( M ` a ) = B ) -> ( M ` ( M ` a ) ) = a )
16 simpr
 |-  ( ( ( ph /\ a e. P ) /\ ( M ` a ) = B ) -> ( M ` a ) = B )
17 16 fveq2d
 |-  ( ( ( ph /\ a e. P ) /\ ( M ` a ) = B ) -> ( M ` ( M ` a ) ) = ( M ` B ) )
18 15 17 eqtr3d
 |-  ( ( ( ph /\ a e. P ) /\ ( M ` a ) = B ) -> a = ( M ` B ) )
19 18 ex
 |-  ( ( ph /\ a e. P ) -> ( ( M ` a ) = B -> a = ( M ` B ) ) )
20 19 ralrimiva
 |-  ( ph -> A. a e. P ( ( M ` a ) = B -> a = ( M ` B ) ) )
21 fveqeq2
 |-  ( a = ( M ` B ) -> ( ( M ` a ) = B <-> ( M ` ( M ` B ) ) = B ) )
22 21 eqreu
 |-  ( ( ( M ` B ) e. P /\ ( M ` ( M ` B ) ) = B /\ A. a e. P ( ( M ` a ) = B -> a = ( M ` B ) ) ) -> E! a e. P ( M ` a ) = B )
23 10 11 20 22 syl3anc
 |-  ( ph -> E! a e. P ( M ` a ) = B )