Metamath Proof Explorer


Theorem mndass

Description: A monoid operation is associative. (Contributed by NM, 14-Aug-2011) (Proof shortened by AV, 8-Feb-2020)

Ref Expression
Hypotheses mndcl.b
|- B = ( Base ` G )
mndcl.p
|- .+ = ( +g ` G )
Assertion mndass
|- ( ( G e. Mnd /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .+ Y ) .+ Z ) = ( X .+ ( Y .+ Z ) ) )

Proof

Step Hyp Ref Expression
1 mndcl.b
 |-  B = ( Base ` G )
2 mndcl.p
 |-  .+ = ( +g ` G )
3 mndsgrp
 |-  ( G e. Mnd -> G e. Smgrp )
4 1 2 sgrpass
 |-  ( ( G e. Smgrp /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .+ Y ) .+ Z ) = ( X .+ ( Y .+ Z ) ) )
5 3 4 sylan
 |-  ( ( G e. Mnd /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .+ Y ) .+ Z ) = ( X .+ ( Y .+ Z ) ) )