Description: A monoid operation is associative. (Contributed by NM, 14-Aug-2011) (Proof shortened by AV, 8-Feb-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mndcl.b | |- B = ( Base ` G ) |
|
mndcl.p | |- .+ = ( +g ` G ) |
||
Assertion | mndass | |- ( ( G e. Mnd /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .+ Y ) .+ Z ) = ( X .+ ( Y .+ Z ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mndcl.b | |- B = ( Base ` G ) |
|
2 | mndcl.p | |- .+ = ( +g ` G ) |
|
3 | mndsgrp | |- ( G e. Mnd -> G e. Smgrp ) |
|
4 | 1 2 | sgrpass | |- ( ( G e. Smgrp /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .+ Y ) .+ Z ) = ( X .+ ( Y .+ Z ) ) ) |
5 | 3 4 | sylan | |- ( ( G e. Mnd /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .+ Y ) .+ Z ) = ( X .+ ( Y .+ Z ) ) ) |