Metamath Proof Explorer


Theorem mndcl

Description: Closure of the operation of a monoid. (Contributed by NM, 14-Aug-2011) (Revised by Mario Carneiro, 6-Jan-2015) (Proof shortened by AV, 8-Feb-2020)

Ref Expression
Hypotheses mndcl.b
|- B = ( Base ` G )
mndcl.p
|- .+ = ( +g ` G )
Assertion mndcl
|- ( ( G e. Mnd /\ X e. B /\ Y e. B ) -> ( X .+ Y ) e. B )

Proof

Step Hyp Ref Expression
1 mndcl.b
 |-  B = ( Base ` G )
2 mndcl.p
 |-  .+ = ( +g ` G )
3 mndmgm
 |-  ( G e. Mnd -> G e. Mgm )
4 1 2 mgmcl
 |-  ( ( G e. Mgm /\ X e. B /\ Y e. B ) -> ( X .+ Y ) e. B )
5 3 4 syl3an1
 |-  ( ( G e. Mnd /\ X e. B /\ Y e. B ) -> ( X .+ Y ) e. B )