Description: Closure of the operation of a monoid. (Contributed by NM, 14-Aug-2011) (Revised by Mario Carneiro, 6-Jan-2015) (Proof shortened by AV, 8-Feb-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mndcl.b | |- B = ( Base ` G ) |
|
mndcl.p | |- .+ = ( +g ` G ) |
||
Assertion | mndcl | |- ( ( G e. Mnd /\ X e. B /\ Y e. B ) -> ( X .+ Y ) e. B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mndcl.b | |- B = ( Base ` G ) |
|
2 | mndcl.p | |- .+ = ( +g ` G ) |
|
3 | mndmgm | |- ( G e. Mnd -> G e. Mgm ) |
|
4 | 1 2 | mgmcl | |- ( ( G e. Mgm /\ X e. B /\ Y e. B ) -> ( X .+ Y ) e. B ) |
5 | 3 4 | syl3an1 | |- ( ( G e. Mnd /\ X e. B /\ Y e. B ) -> ( X .+ Y ) e. B ) |