Step |
Hyp |
Ref |
Expression |
1 |
|
mndfo.b |
|- B = ( Base ` G ) |
2 |
|
mndfo.p |
|- .+ = ( +g ` G ) |
3 |
|
eqid |
|- ( +f ` G ) = ( +f ` G ) |
4 |
1 3
|
mndpfo |
|- ( G e. Mnd -> ( +f ` G ) : ( B X. B ) -onto-> B ) |
5 |
4
|
adantr |
|- ( ( G e. Mnd /\ .+ Fn ( B X. B ) ) -> ( +f ` G ) : ( B X. B ) -onto-> B ) |
6 |
1 2 3
|
plusfeq |
|- ( .+ Fn ( B X. B ) -> ( +f ` G ) = .+ ) |
7 |
6
|
eqcomd |
|- ( .+ Fn ( B X. B ) -> .+ = ( +f ` G ) ) |
8 |
7
|
adantl |
|- ( ( G e. Mnd /\ .+ Fn ( B X. B ) ) -> .+ = ( +f ` G ) ) |
9 |
|
foeq1 |
|- ( .+ = ( +f ` G ) -> ( .+ : ( B X. B ) -onto-> B <-> ( +f ` G ) : ( B X. B ) -onto-> B ) ) |
10 |
8 9
|
syl |
|- ( ( G e. Mnd /\ .+ Fn ( B X. B ) ) -> ( .+ : ( B X. B ) -onto-> B <-> ( +f ` G ) : ( B X. B ) -onto-> B ) ) |
11 |
5 10
|
mpbird |
|- ( ( G e. Mnd /\ .+ Fn ( B X. B ) ) -> .+ : ( B X. B ) -onto-> B ) |