| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mndfo.b |  |-  B = ( Base ` G ) | 
						
							| 2 |  | mndfo.p |  |-  .+ = ( +g ` G ) | 
						
							| 3 |  | eqid |  |-  ( +f ` G ) = ( +f ` G ) | 
						
							| 4 | 1 3 | mndpfo |  |-  ( G e. Mnd -> ( +f ` G ) : ( B X. B ) -onto-> B ) | 
						
							| 5 | 4 | adantr |  |-  ( ( G e. Mnd /\ .+ Fn ( B X. B ) ) -> ( +f ` G ) : ( B X. B ) -onto-> B ) | 
						
							| 6 | 1 2 3 | plusfeq |  |-  ( .+ Fn ( B X. B ) -> ( +f ` G ) = .+ ) | 
						
							| 7 | 6 | eqcomd |  |-  ( .+ Fn ( B X. B ) -> .+ = ( +f ` G ) ) | 
						
							| 8 | 7 | adantl |  |-  ( ( G e. Mnd /\ .+ Fn ( B X. B ) ) -> .+ = ( +f ` G ) ) | 
						
							| 9 |  | foeq1 |  |-  ( .+ = ( +f ` G ) -> ( .+ : ( B X. B ) -onto-> B <-> ( +f ` G ) : ( B X. B ) -onto-> B ) ) | 
						
							| 10 | 8 9 | syl |  |-  ( ( G e. Mnd /\ .+ Fn ( B X. B ) ) -> ( .+ : ( B X. B ) -onto-> B <-> ( +f ` G ) : ( B X. B ) -onto-> B ) ) | 
						
							| 11 | 5 10 | mpbird |  |-  ( ( G e. Mnd /\ .+ Fn ( B X. B ) ) -> .+ : ( B X. B ) -onto-> B ) |