| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mndfo.b |
|- B = ( Base ` G ) |
| 2 |
|
mndfo.p |
|- .+ = ( +g ` G ) |
| 3 |
|
eqid |
|- ( +f ` G ) = ( +f ` G ) |
| 4 |
1 3
|
mndpfo |
|- ( G e. Mnd -> ( +f ` G ) : ( B X. B ) -onto-> B ) |
| 5 |
4
|
adantr |
|- ( ( G e. Mnd /\ .+ Fn ( B X. B ) ) -> ( +f ` G ) : ( B X. B ) -onto-> B ) |
| 6 |
1 2 3
|
plusfeq |
|- ( .+ Fn ( B X. B ) -> ( +f ` G ) = .+ ) |
| 7 |
6
|
eqcomd |
|- ( .+ Fn ( B X. B ) -> .+ = ( +f ` G ) ) |
| 8 |
7
|
adantl |
|- ( ( G e. Mnd /\ .+ Fn ( B X. B ) ) -> .+ = ( +f ` G ) ) |
| 9 |
|
foeq1 |
|- ( .+ = ( +f ` G ) -> ( .+ : ( B X. B ) -onto-> B <-> ( +f ` G ) : ( B X. B ) -onto-> B ) ) |
| 10 |
8 9
|
syl |
|- ( ( G e. Mnd /\ .+ Fn ( B X. B ) ) -> ( .+ : ( B X. B ) -onto-> B <-> ( +f ` G ) : ( B X. B ) -onto-> B ) ) |
| 11 |
5 10
|
mpbird |
|- ( ( G e. Mnd /\ .+ Fn ( B X. B ) ) -> .+ : ( B X. B ) -onto-> B ) |