Metamath Proof Explorer


Theorem mndfo

Description: The addition operation of a monoid is an onto function (assuming it is a function). (Contributed by Mario Carneiro, 11-Oct-2013) (Proof shortened by AV, 23-Jan-2020)

Ref Expression
Hypotheses mndfo.b
|- B = ( Base ` G )
mndfo.p
|- .+ = ( +g ` G )
Assertion mndfo
|- ( ( G e. Mnd /\ .+ Fn ( B X. B ) ) -> .+ : ( B X. B ) -onto-> B )

Proof

Step Hyp Ref Expression
1 mndfo.b
 |-  B = ( Base ` G )
2 mndfo.p
 |-  .+ = ( +g ` G )
3 eqid
 |-  ( +f ` G ) = ( +f ` G )
4 1 3 mndpfo
 |-  ( G e. Mnd -> ( +f ` G ) : ( B X. B ) -onto-> B )
5 4 adantr
 |-  ( ( G e. Mnd /\ .+ Fn ( B X. B ) ) -> ( +f ` G ) : ( B X. B ) -onto-> B )
6 1 2 3 plusfeq
 |-  ( .+ Fn ( B X. B ) -> ( +f ` G ) = .+ )
7 6 eqcomd
 |-  ( .+ Fn ( B X. B ) -> .+ = ( +f ` G ) )
8 7 adantl
 |-  ( ( G e. Mnd /\ .+ Fn ( B X. B ) ) -> .+ = ( +f ` G ) )
9 foeq1
 |-  ( .+ = ( +f ` G ) -> ( .+ : ( B X. B ) -onto-> B <-> ( +f ` G ) : ( B X. B ) -onto-> B ) )
10 8 9 syl
 |-  ( ( G e. Mnd /\ .+ Fn ( B X. B ) ) -> ( .+ : ( B X. B ) -onto-> B <-> ( +f ` G ) : ( B X. B ) -onto-> B ) )
11 5 10 mpbird
 |-  ( ( G e. Mnd /\ .+ Fn ( B X. B ) ) -> .+ : ( B X. B ) -onto-> B )