Metamath Proof Explorer


Theorem mndidcl

Description: The identity element of a monoid belongs to the monoid. (Contributed by NM, 27-Aug-2011) (Revised by Mario Carneiro, 27-Dec-2014)

Ref Expression
Hypotheses mndidcl.b
|- B = ( Base ` G )
mndidcl.o
|- .0. = ( 0g ` G )
Assertion mndidcl
|- ( G e. Mnd -> .0. e. B )

Proof

Step Hyp Ref Expression
1 mndidcl.b
 |-  B = ( Base ` G )
2 mndidcl.o
 |-  .0. = ( 0g ` G )
3 eqid
 |-  ( +g ` G ) = ( +g ` G )
4 1 3 mndid
 |-  ( G e. Mnd -> E. x e. B A. y e. B ( ( x ( +g ` G ) y ) = y /\ ( y ( +g ` G ) x ) = y ) )
5 1 2 3 4 mgmidcl
 |-  ( G e. Mnd -> .0. e. B )