Metamath Proof Explorer


Theorem mndideu

Description: The two-sided identity element of a monoid is unique. Lemma 2.2.1(a) of Herstein p. 55. (Contributed by Mario Carneiro, 8-Dec-2014)

Ref Expression
Hypotheses mndcl.b
|- B = ( Base ` G )
mndcl.p
|- .+ = ( +g ` G )
Assertion mndideu
|- ( G e. Mnd -> E! u e. B A. x e. B ( ( u .+ x ) = x /\ ( x .+ u ) = x ) )

Proof

Step Hyp Ref Expression
1 mndcl.b
 |-  B = ( Base ` G )
2 mndcl.p
 |-  .+ = ( +g ` G )
3 1 2 mndid
 |-  ( G e. Mnd -> E. u e. B A. x e. B ( ( u .+ x ) = x /\ ( x .+ u ) = x ) )
4 mgmidmo
 |-  E* u e. B A. x e. B ( ( u .+ x ) = x /\ ( x .+ u ) = x )
5 reu5
 |-  ( E! u e. B A. x e. B ( ( u .+ x ) = x /\ ( x .+ u ) = x ) <-> ( E. u e. B A. x e. B ( ( u .+ x ) = x /\ ( x .+ u ) = x ) /\ E* u e. B A. x e. B ( ( u .+ x ) = x /\ ( x .+ u ) = x ) ) )
6 3 4 5 sylanblrc
 |-  ( G e. Mnd -> E! u e. B A. x e. B ( ( u .+ x ) = x /\ ( x .+ u ) = x ) )