Step |
Hyp |
Ref |
Expression |
1 |
|
mndifsplit.b |
|- B = ( Base ` M ) |
2 |
|
mndifsplit.0g |
|- .0. = ( 0g ` M ) |
3 |
|
mndifsplit.pg |
|- .+ = ( +g ` M ) |
4 |
|
pm2.21 |
|- ( -. ( ph /\ ps ) -> ( ( ph /\ ps ) -> if ( ( ph \/ ps ) , A , .0. ) = ( if ( ph , A , .0. ) .+ if ( ps , A , .0. ) ) ) ) |
5 |
4
|
imp |
|- ( ( -. ( ph /\ ps ) /\ ( ph /\ ps ) ) -> if ( ( ph \/ ps ) , A , .0. ) = ( if ( ph , A , .0. ) .+ if ( ps , A , .0. ) ) ) |
6 |
5
|
3ad2antl3 |
|- ( ( ( M e. Mnd /\ A e. B /\ -. ( ph /\ ps ) ) /\ ( ph /\ ps ) ) -> if ( ( ph \/ ps ) , A , .0. ) = ( if ( ph , A , .0. ) .+ if ( ps , A , .0. ) ) ) |
7 |
1 3 2
|
mndrid |
|- ( ( M e. Mnd /\ A e. B ) -> ( A .+ .0. ) = A ) |
8 |
7
|
3adant3 |
|- ( ( M e. Mnd /\ A e. B /\ -. ( ph /\ ps ) ) -> ( A .+ .0. ) = A ) |
9 |
8
|
adantr |
|- ( ( ( M e. Mnd /\ A e. B /\ -. ( ph /\ ps ) ) /\ ( ph /\ -. ps ) ) -> ( A .+ .0. ) = A ) |
10 |
|
iftrue |
|- ( ph -> if ( ph , A , .0. ) = A ) |
11 |
|
iffalse |
|- ( -. ps -> if ( ps , A , .0. ) = .0. ) |
12 |
10 11
|
oveqan12d |
|- ( ( ph /\ -. ps ) -> ( if ( ph , A , .0. ) .+ if ( ps , A , .0. ) ) = ( A .+ .0. ) ) |
13 |
12
|
adantl |
|- ( ( ( M e. Mnd /\ A e. B /\ -. ( ph /\ ps ) ) /\ ( ph /\ -. ps ) ) -> ( if ( ph , A , .0. ) .+ if ( ps , A , .0. ) ) = ( A .+ .0. ) ) |
14 |
|
iftrue |
|- ( ( ph \/ ps ) -> if ( ( ph \/ ps ) , A , .0. ) = A ) |
15 |
14
|
orcs |
|- ( ph -> if ( ( ph \/ ps ) , A , .0. ) = A ) |
16 |
15
|
ad2antrl |
|- ( ( ( M e. Mnd /\ A e. B /\ -. ( ph /\ ps ) ) /\ ( ph /\ -. ps ) ) -> if ( ( ph \/ ps ) , A , .0. ) = A ) |
17 |
9 13 16
|
3eqtr4rd |
|- ( ( ( M e. Mnd /\ A e. B /\ -. ( ph /\ ps ) ) /\ ( ph /\ -. ps ) ) -> if ( ( ph \/ ps ) , A , .0. ) = ( if ( ph , A , .0. ) .+ if ( ps , A , .0. ) ) ) |
18 |
1 3 2
|
mndlid |
|- ( ( M e. Mnd /\ A e. B ) -> ( .0. .+ A ) = A ) |
19 |
18
|
3adant3 |
|- ( ( M e. Mnd /\ A e. B /\ -. ( ph /\ ps ) ) -> ( .0. .+ A ) = A ) |
20 |
19
|
adantr |
|- ( ( ( M e. Mnd /\ A e. B /\ -. ( ph /\ ps ) ) /\ ( -. ph /\ ps ) ) -> ( .0. .+ A ) = A ) |
21 |
|
iffalse |
|- ( -. ph -> if ( ph , A , .0. ) = .0. ) |
22 |
|
iftrue |
|- ( ps -> if ( ps , A , .0. ) = A ) |
23 |
21 22
|
oveqan12d |
|- ( ( -. ph /\ ps ) -> ( if ( ph , A , .0. ) .+ if ( ps , A , .0. ) ) = ( .0. .+ A ) ) |
24 |
23
|
adantl |
|- ( ( ( M e. Mnd /\ A e. B /\ -. ( ph /\ ps ) ) /\ ( -. ph /\ ps ) ) -> ( if ( ph , A , .0. ) .+ if ( ps , A , .0. ) ) = ( .0. .+ A ) ) |
25 |
14
|
olcs |
|- ( ps -> if ( ( ph \/ ps ) , A , .0. ) = A ) |
26 |
25
|
ad2antll |
|- ( ( ( M e. Mnd /\ A e. B /\ -. ( ph /\ ps ) ) /\ ( -. ph /\ ps ) ) -> if ( ( ph \/ ps ) , A , .0. ) = A ) |
27 |
20 24 26
|
3eqtr4rd |
|- ( ( ( M e. Mnd /\ A e. B /\ -. ( ph /\ ps ) ) /\ ( -. ph /\ ps ) ) -> if ( ( ph \/ ps ) , A , .0. ) = ( if ( ph , A , .0. ) .+ if ( ps , A , .0. ) ) ) |
28 |
|
simp1 |
|- ( ( M e. Mnd /\ A e. B /\ -. ( ph /\ ps ) ) -> M e. Mnd ) |
29 |
1 2
|
mndidcl |
|- ( M e. Mnd -> .0. e. B ) |
30 |
1 3 2
|
mndlid |
|- ( ( M e. Mnd /\ .0. e. B ) -> ( .0. .+ .0. ) = .0. ) |
31 |
28 29 30
|
syl2anc2 |
|- ( ( M e. Mnd /\ A e. B /\ -. ( ph /\ ps ) ) -> ( .0. .+ .0. ) = .0. ) |
32 |
31
|
adantr |
|- ( ( ( M e. Mnd /\ A e. B /\ -. ( ph /\ ps ) ) /\ ( -. ph /\ -. ps ) ) -> ( .0. .+ .0. ) = .0. ) |
33 |
21 11
|
oveqan12d |
|- ( ( -. ph /\ -. ps ) -> ( if ( ph , A , .0. ) .+ if ( ps , A , .0. ) ) = ( .0. .+ .0. ) ) |
34 |
33
|
adantl |
|- ( ( ( M e. Mnd /\ A e. B /\ -. ( ph /\ ps ) ) /\ ( -. ph /\ -. ps ) ) -> ( if ( ph , A , .0. ) .+ if ( ps , A , .0. ) ) = ( .0. .+ .0. ) ) |
35 |
|
ioran |
|- ( -. ( ph \/ ps ) <-> ( -. ph /\ -. ps ) ) |
36 |
|
iffalse |
|- ( -. ( ph \/ ps ) -> if ( ( ph \/ ps ) , A , .0. ) = .0. ) |
37 |
35 36
|
sylbir |
|- ( ( -. ph /\ -. ps ) -> if ( ( ph \/ ps ) , A , .0. ) = .0. ) |
38 |
37
|
adantl |
|- ( ( ( M e. Mnd /\ A e. B /\ -. ( ph /\ ps ) ) /\ ( -. ph /\ -. ps ) ) -> if ( ( ph \/ ps ) , A , .0. ) = .0. ) |
39 |
32 34 38
|
3eqtr4rd |
|- ( ( ( M e. Mnd /\ A e. B /\ -. ( ph /\ ps ) ) /\ ( -. ph /\ -. ps ) ) -> if ( ( ph \/ ps ) , A , .0. ) = ( if ( ph , A , .0. ) .+ if ( ps , A , .0. ) ) ) |
40 |
6 17 27 39
|
4casesdan |
|- ( ( M e. Mnd /\ A e. B /\ -. ( ph /\ ps ) ) -> if ( ( ph \/ ps ) , A , .0. ) = ( if ( ph , A , .0. ) .+ if ( ps , A , .0. ) ) ) |