| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mndifsplit.b |  |-  B = ( Base ` M ) | 
						
							| 2 |  | mndifsplit.0g |  |-  .0. = ( 0g ` M ) | 
						
							| 3 |  | mndifsplit.pg |  |-  .+ = ( +g ` M ) | 
						
							| 4 |  | pm2.21 |  |-  ( -. ( ph /\ ps ) -> ( ( ph /\ ps ) -> if ( ( ph \/ ps ) , A , .0. ) = ( if ( ph , A , .0. ) .+ if ( ps , A , .0. ) ) ) ) | 
						
							| 5 | 4 | imp |  |-  ( ( -. ( ph /\ ps ) /\ ( ph /\ ps ) ) -> if ( ( ph \/ ps ) , A , .0. ) = ( if ( ph , A , .0. ) .+ if ( ps , A , .0. ) ) ) | 
						
							| 6 | 5 | 3ad2antl3 |  |-  ( ( ( M e. Mnd /\ A e. B /\ -. ( ph /\ ps ) ) /\ ( ph /\ ps ) ) -> if ( ( ph \/ ps ) , A , .0. ) = ( if ( ph , A , .0. ) .+ if ( ps , A , .0. ) ) ) | 
						
							| 7 | 1 3 2 | mndrid |  |-  ( ( M e. Mnd /\ A e. B ) -> ( A .+ .0. ) = A ) | 
						
							| 8 | 7 | 3adant3 |  |-  ( ( M e. Mnd /\ A e. B /\ -. ( ph /\ ps ) ) -> ( A .+ .0. ) = A ) | 
						
							| 9 | 8 | adantr |  |-  ( ( ( M e. Mnd /\ A e. B /\ -. ( ph /\ ps ) ) /\ ( ph /\ -. ps ) ) -> ( A .+ .0. ) = A ) | 
						
							| 10 |  | iftrue |  |-  ( ph -> if ( ph , A , .0. ) = A ) | 
						
							| 11 |  | iffalse |  |-  ( -. ps -> if ( ps , A , .0. ) = .0. ) | 
						
							| 12 | 10 11 | oveqan12d |  |-  ( ( ph /\ -. ps ) -> ( if ( ph , A , .0. ) .+ if ( ps , A , .0. ) ) = ( A .+ .0. ) ) | 
						
							| 13 | 12 | adantl |  |-  ( ( ( M e. Mnd /\ A e. B /\ -. ( ph /\ ps ) ) /\ ( ph /\ -. ps ) ) -> ( if ( ph , A , .0. ) .+ if ( ps , A , .0. ) ) = ( A .+ .0. ) ) | 
						
							| 14 |  | iftrue |  |-  ( ( ph \/ ps ) -> if ( ( ph \/ ps ) , A , .0. ) = A ) | 
						
							| 15 | 14 | orcs |  |-  ( ph -> if ( ( ph \/ ps ) , A , .0. ) = A ) | 
						
							| 16 | 15 | ad2antrl |  |-  ( ( ( M e. Mnd /\ A e. B /\ -. ( ph /\ ps ) ) /\ ( ph /\ -. ps ) ) -> if ( ( ph \/ ps ) , A , .0. ) = A ) | 
						
							| 17 | 9 13 16 | 3eqtr4rd |  |-  ( ( ( M e. Mnd /\ A e. B /\ -. ( ph /\ ps ) ) /\ ( ph /\ -. ps ) ) -> if ( ( ph \/ ps ) , A , .0. ) = ( if ( ph , A , .0. ) .+ if ( ps , A , .0. ) ) ) | 
						
							| 18 | 1 3 2 | mndlid |  |-  ( ( M e. Mnd /\ A e. B ) -> ( .0. .+ A ) = A ) | 
						
							| 19 | 18 | 3adant3 |  |-  ( ( M e. Mnd /\ A e. B /\ -. ( ph /\ ps ) ) -> ( .0. .+ A ) = A ) | 
						
							| 20 | 19 | adantr |  |-  ( ( ( M e. Mnd /\ A e. B /\ -. ( ph /\ ps ) ) /\ ( -. ph /\ ps ) ) -> ( .0. .+ A ) = A ) | 
						
							| 21 |  | iffalse |  |-  ( -. ph -> if ( ph , A , .0. ) = .0. ) | 
						
							| 22 |  | iftrue |  |-  ( ps -> if ( ps , A , .0. ) = A ) | 
						
							| 23 | 21 22 | oveqan12d |  |-  ( ( -. ph /\ ps ) -> ( if ( ph , A , .0. ) .+ if ( ps , A , .0. ) ) = ( .0. .+ A ) ) | 
						
							| 24 | 23 | adantl |  |-  ( ( ( M e. Mnd /\ A e. B /\ -. ( ph /\ ps ) ) /\ ( -. ph /\ ps ) ) -> ( if ( ph , A , .0. ) .+ if ( ps , A , .0. ) ) = ( .0. .+ A ) ) | 
						
							| 25 | 14 | olcs |  |-  ( ps -> if ( ( ph \/ ps ) , A , .0. ) = A ) | 
						
							| 26 | 25 | ad2antll |  |-  ( ( ( M e. Mnd /\ A e. B /\ -. ( ph /\ ps ) ) /\ ( -. ph /\ ps ) ) -> if ( ( ph \/ ps ) , A , .0. ) = A ) | 
						
							| 27 | 20 24 26 | 3eqtr4rd |  |-  ( ( ( M e. Mnd /\ A e. B /\ -. ( ph /\ ps ) ) /\ ( -. ph /\ ps ) ) -> if ( ( ph \/ ps ) , A , .0. ) = ( if ( ph , A , .0. ) .+ if ( ps , A , .0. ) ) ) | 
						
							| 28 |  | simp1 |  |-  ( ( M e. Mnd /\ A e. B /\ -. ( ph /\ ps ) ) -> M e. Mnd ) | 
						
							| 29 | 1 2 | mndidcl |  |-  ( M e. Mnd -> .0. e. B ) | 
						
							| 30 | 1 3 2 | mndlid |  |-  ( ( M e. Mnd /\ .0. e. B ) -> ( .0. .+ .0. ) = .0. ) | 
						
							| 31 | 28 29 30 | syl2anc2 |  |-  ( ( M e. Mnd /\ A e. B /\ -. ( ph /\ ps ) ) -> ( .0. .+ .0. ) = .0. ) | 
						
							| 32 | 31 | adantr |  |-  ( ( ( M e. Mnd /\ A e. B /\ -. ( ph /\ ps ) ) /\ ( -. ph /\ -. ps ) ) -> ( .0. .+ .0. ) = .0. ) | 
						
							| 33 | 21 11 | oveqan12d |  |-  ( ( -. ph /\ -. ps ) -> ( if ( ph , A , .0. ) .+ if ( ps , A , .0. ) ) = ( .0. .+ .0. ) ) | 
						
							| 34 | 33 | adantl |  |-  ( ( ( M e. Mnd /\ A e. B /\ -. ( ph /\ ps ) ) /\ ( -. ph /\ -. ps ) ) -> ( if ( ph , A , .0. ) .+ if ( ps , A , .0. ) ) = ( .0. .+ .0. ) ) | 
						
							| 35 |  | ioran |  |-  ( -. ( ph \/ ps ) <-> ( -. ph /\ -. ps ) ) | 
						
							| 36 |  | iffalse |  |-  ( -. ( ph \/ ps ) -> if ( ( ph \/ ps ) , A , .0. ) = .0. ) | 
						
							| 37 | 35 36 | sylbir |  |-  ( ( -. ph /\ -. ps ) -> if ( ( ph \/ ps ) , A , .0. ) = .0. ) | 
						
							| 38 | 37 | adantl |  |-  ( ( ( M e. Mnd /\ A e. B /\ -. ( ph /\ ps ) ) /\ ( -. ph /\ -. ps ) ) -> if ( ( ph \/ ps ) , A , .0. ) = .0. ) | 
						
							| 39 | 32 34 38 | 3eqtr4rd |  |-  ( ( ( M e. Mnd /\ A e. B /\ -. ( ph /\ ps ) ) /\ ( -. ph /\ -. ps ) ) -> if ( ( ph \/ ps ) , A , .0. ) = ( if ( ph , A , .0. ) .+ if ( ps , A , .0. ) ) ) | 
						
							| 40 | 6 17 27 39 | 4casesdan |  |-  ( ( M e. Mnd /\ A e. B /\ -. ( ph /\ ps ) ) -> if ( ( ph \/ ps ) , A , .0. ) = ( if ( ph , A , .0. ) .+ if ( ps , A , .0. ) ) ) |