| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mndissubm.b |  |-  B = ( Base ` G ) | 
						
							| 2 |  | mndissubm.s |  |-  S = ( Base ` H ) | 
						
							| 3 |  | mndissubm.z |  |-  .0. = ( 0g ` G ) | 
						
							| 4 |  | simpr1 |  |-  ( ( ( G e. Mnd /\ H e. Mnd ) /\ ( S C_ B /\ .0. e. S /\ ( +g ` H ) = ( ( +g ` G ) |` ( S X. S ) ) ) ) -> S C_ B ) | 
						
							| 5 |  | simpr2 |  |-  ( ( ( G e. Mnd /\ H e. Mnd ) /\ ( S C_ B /\ .0. e. S /\ ( +g ` H ) = ( ( +g ` G ) |` ( S X. S ) ) ) ) -> .0. e. S ) | 
						
							| 6 |  | mndmgm |  |-  ( G e. Mnd -> G e. Mgm ) | 
						
							| 7 |  | mndmgm |  |-  ( H e. Mnd -> H e. Mgm ) | 
						
							| 8 | 6 7 | anim12i |  |-  ( ( G e. Mnd /\ H e. Mnd ) -> ( G e. Mgm /\ H e. Mgm ) ) | 
						
							| 9 | 8 | ad2antrr |  |-  ( ( ( ( G e. Mnd /\ H e. Mnd ) /\ ( S C_ B /\ .0. e. S /\ ( +g ` H ) = ( ( +g ` G ) |` ( S X. S ) ) ) ) /\ ( a e. S /\ b e. S ) ) -> ( G e. Mgm /\ H e. Mgm ) ) | 
						
							| 10 |  | 3simpb |  |-  ( ( S C_ B /\ .0. e. S /\ ( +g ` H ) = ( ( +g ` G ) |` ( S X. S ) ) ) -> ( S C_ B /\ ( +g ` H ) = ( ( +g ` G ) |` ( S X. S ) ) ) ) | 
						
							| 11 | 10 | ad2antlr |  |-  ( ( ( ( G e. Mnd /\ H e. Mnd ) /\ ( S C_ B /\ .0. e. S /\ ( +g ` H ) = ( ( +g ` G ) |` ( S X. S ) ) ) ) /\ ( a e. S /\ b e. S ) ) -> ( S C_ B /\ ( +g ` H ) = ( ( +g ` G ) |` ( S X. S ) ) ) ) | 
						
							| 12 |  | simpr |  |-  ( ( ( ( G e. Mnd /\ H e. Mnd ) /\ ( S C_ B /\ .0. e. S /\ ( +g ` H ) = ( ( +g ` G ) |` ( S X. S ) ) ) ) /\ ( a e. S /\ b e. S ) ) -> ( a e. S /\ b e. S ) ) | 
						
							| 13 | 1 2 | mgmsscl |  |-  ( ( ( G e. Mgm /\ H e. Mgm ) /\ ( S C_ B /\ ( +g ` H ) = ( ( +g ` G ) |` ( S X. S ) ) ) /\ ( a e. S /\ b e. S ) ) -> ( a ( +g ` G ) b ) e. S ) | 
						
							| 14 | 9 11 12 13 | syl3anc |  |-  ( ( ( ( G e. Mnd /\ H e. Mnd ) /\ ( S C_ B /\ .0. e. S /\ ( +g ` H ) = ( ( +g ` G ) |` ( S X. S ) ) ) ) /\ ( a e. S /\ b e. S ) ) -> ( a ( +g ` G ) b ) e. S ) | 
						
							| 15 | 14 | ralrimivva |  |-  ( ( ( G e. Mnd /\ H e. Mnd ) /\ ( S C_ B /\ .0. e. S /\ ( +g ` H ) = ( ( +g ` G ) |` ( S X. S ) ) ) ) -> A. a e. S A. b e. S ( a ( +g ` G ) b ) e. S ) | 
						
							| 16 |  | eqid |  |-  ( +g ` G ) = ( +g ` G ) | 
						
							| 17 | 1 3 16 | issubm |  |-  ( G e. Mnd -> ( S e. ( SubMnd ` G ) <-> ( S C_ B /\ .0. e. S /\ A. a e. S A. b e. S ( a ( +g ` G ) b ) e. S ) ) ) | 
						
							| 18 | 17 | ad2antrr |  |-  ( ( ( G e. Mnd /\ H e. Mnd ) /\ ( S C_ B /\ .0. e. S /\ ( +g ` H ) = ( ( +g ` G ) |` ( S X. S ) ) ) ) -> ( S e. ( SubMnd ` G ) <-> ( S C_ B /\ .0. e. S /\ A. a e. S A. b e. S ( a ( +g ` G ) b ) e. S ) ) ) | 
						
							| 19 | 4 5 15 18 | mpbir3and |  |-  ( ( ( G e. Mnd /\ H e. Mnd ) /\ ( S C_ B /\ .0. e. S /\ ( +g ` H ) = ( ( +g ` G ) |` ( S X. S ) ) ) ) -> S e. ( SubMnd ` G ) ) | 
						
							| 20 | 19 | ex |  |-  ( ( G e. Mnd /\ H e. Mnd ) -> ( ( S C_ B /\ .0. e. S /\ ( +g ` H ) = ( ( +g ` G ) |` ( S X. S ) ) ) -> S e. ( SubMnd ` G ) ) ) |