Description: Subgroup sum is idempotent for monoids. This corresponds to the observation in Lang p. 6. (Contributed by AV, 27-Dec-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mndlsmidm.p | |- .(+) = ( LSSum ` G ) |
|
| mndlsmidm.b | |- B = ( Base ` G ) |
||
| Assertion | mndlsmidm | |- ( G e. Mnd -> ( B .(+) B ) = B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndlsmidm.p | |- .(+) = ( LSSum ` G ) |
|
| 2 | mndlsmidm.b | |- B = ( Base ` G ) |
|
| 3 | 2 | submid | |- ( G e. Mnd -> B e. ( SubMnd ` G ) ) |
| 4 | 1 | smndlsmidm | |- ( B e. ( SubMnd ` G ) -> ( B .(+) B ) = B ) |
| 5 | 3 4 | syl | |- ( G e. Mnd -> ( B .(+) B ) = B ) |