Metamath Proof Explorer


Theorem mndmgm

Description: A monoid is a magma. (Contributed by FL, 2-Nov-2009) (Revised by AV, 6-Jan-2020) (Proof shortened by AV, 6-Feb-2020)

Ref Expression
Assertion mndmgm
|- ( M e. Mnd -> M e. Mgm )

Proof

Step Hyp Ref Expression
1 mndsgrp
 |-  ( M e. Mnd -> M e. Smgrp )
2 sgrpmgm
 |-  ( M e. Smgrp -> M e. Mgm )
3 1 2 syl
 |-  ( M e. Mnd -> M e. Mgm )