| Step | Hyp | Ref | Expression | 
						
							| 1 |  | odcl.1 |  |-  X = ( Base ` G ) | 
						
							| 2 |  | odcl.2 |  |-  O = ( od ` G ) | 
						
							| 3 |  | odid.3 |  |-  .x. = ( .g ` G ) | 
						
							| 4 |  | odid.4 |  |-  .0. = ( 0g ` G ) | 
						
							| 5 | 1 2 3 4 | mndodcong |  |-  ( ( ( G e. Mnd /\ A e. X ) /\ ( M e. NN0 /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( ( O ` A ) || ( M - N ) <-> ( M .x. A ) = ( N .x. A ) ) ) | 
						
							| 6 | 5 | biimpd |  |-  ( ( ( G e. Mnd /\ A e. X ) /\ ( M e. NN0 /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( ( O ` A ) || ( M - N ) -> ( M .x. A ) = ( N .x. A ) ) ) | 
						
							| 7 | 6 | 3expia |  |-  ( ( ( G e. Mnd /\ A e. X ) /\ ( M e. NN0 /\ N e. NN0 ) ) -> ( ( O ` A ) e. NN -> ( ( O ` A ) || ( M - N ) -> ( M .x. A ) = ( N .x. A ) ) ) ) | 
						
							| 8 | 7 | 3impa |  |-  ( ( G e. Mnd /\ A e. X /\ ( M e. NN0 /\ N e. NN0 ) ) -> ( ( O ` A ) e. NN -> ( ( O ` A ) || ( M - N ) -> ( M .x. A ) = ( N .x. A ) ) ) ) | 
						
							| 9 |  | nn0z |  |-  ( M e. NN0 -> M e. ZZ ) | 
						
							| 10 |  | nn0z |  |-  ( N e. NN0 -> N e. ZZ ) | 
						
							| 11 |  | zsubcl |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M - N ) e. ZZ ) | 
						
							| 12 | 9 10 11 | syl2an |  |-  ( ( M e. NN0 /\ N e. NN0 ) -> ( M - N ) e. ZZ ) | 
						
							| 13 | 12 | 3ad2ant3 |  |-  ( ( G e. Mnd /\ A e. X /\ ( M e. NN0 /\ N e. NN0 ) ) -> ( M - N ) e. ZZ ) | 
						
							| 14 |  | 0dvds |  |-  ( ( M - N ) e. ZZ -> ( 0 || ( M - N ) <-> ( M - N ) = 0 ) ) | 
						
							| 15 | 13 14 | syl |  |-  ( ( G e. Mnd /\ A e. X /\ ( M e. NN0 /\ N e. NN0 ) ) -> ( 0 || ( M - N ) <-> ( M - N ) = 0 ) ) | 
						
							| 16 |  | nn0cn |  |-  ( M e. NN0 -> M e. CC ) | 
						
							| 17 |  | nn0cn |  |-  ( N e. NN0 -> N e. CC ) | 
						
							| 18 |  | subeq0 |  |-  ( ( M e. CC /\ N e. CC ) -> ( ( M - N ) = 0 <-> M = N ) ) | 
						
							| 19 | 16 17 18 | syl2an |  |-  ( ( M e. NN0 /\ N e. NN0 ) -> ( ( M - N ) = 0 <-> M = N ) ) | 
						
							| 20 | 19 | 3ad2ant3 |  |-  ( ( G e. Mnd /\ A e. X /\ ( M e. NN0 /\ N e. NN0 ) ) -> ( ( M - N ) = 0 <-> M = N ) ) | 
						
							| 21 |  | oveq1 |  |-  ( M = N -> ( M .x. A ) = ( N .x. A ) ) | 
						
							| 22 | 20 21 | biimtrdi |  |-  ( ( G e. Mnd /\ A e. X /\ ( M e. NN0 /\ N e. NN0 ) ) -> ( ( M - N ) = 0 -> ( M .x. A ) = ( N .x. A ) ) ) | 
						
							| 23 | 15 22 | sylbid |  |-  ( ( G e. Mnd /\ A e. X /\ ( M e. NN0 /\ N e. NN0 ) ) -> ( 0 || ( M - N ) -> ( M .x. A ) = ( N .x. A ) ) ) | 
						
							| 24 |  | breq1 |  |-  ( ( O ` A ) = 0 -> ( ( O ` A ) || ( M - N ) <-> 0 || ( M - N ) ) ) | 
						
							| 25 | 24 | imbi1d |  |-  ( ( O ` A ) = 0 -> ( ( ( O ` A ) || ( M - N ) -> ( M .x. A ) = ( N .x. A ) ) <-> ( 0 || ( M - N ) -> ( M .x. A ) = ( N .x. A ) ) ) ) | 
						
							| 26 | 23 25 | syl5ibrcom |  |-  ( ( G e. Mnd /\ A e. X /\ ( M e. NN0 /\ N e. NN0 ) ) -> ( ( O ` A ) = 0 -> ( ( O ` A ) || ( M - N ) -> ( M .x. A ) = ( N .x. A ) ) ) ) | 
						
							| 27 | 1 2 | odcl |  |-  ( A e. X -> ( O ` A ) e. NN0 ) | 
						
							| 28 | 27 | 3ad2ant2 |  |-  ( ( G e. Mnd /\ A e. X /\ ( M e. NN0 /\ N e. NN0 ) ) -> ( O ` A ) e. NN0 ) | 
						
							| 29 |  | elnn0 |  |-  ( ( O ` A ) e. NN0 <-> ( ( O ` A ) e. NN \/ ( O ` A ) = 0 ) ) | 
						
							| 30 | 28 29 | sylib |  |-  ( ( G e. Mnd /\ A e. X /\ ( M e. NN0 /\ N e. NN0 ) ) -> ( ( O ` A ) e. NN \/ ( O ` A ) = 0 ) ) | 
						
							| 31 | 8 26 30 | mpjaod |  |-  ( ( G e. Mnd /\ A e. X /\ ( M e. NN0 /\ N e. NN0 ) ) -> ( ( O ` A ) || ( M - N ) -> ( M .x. A ) = ( N .x. A ) ) ) |