Step |
Hyp |
Ref |
Expression |
1 |
|
odcl.1 |
|- X = ( Base ` G ) |
2 |
|
odcl.2 |
|- O = ( od ` G ) |
3 |
|
odid.3 |
|- .x. = ( .g ` G ) |
4 |
|
odid.4 |
|- .0. = ( 0g ` G ) |
5 |
1 2 3 4
|
mndodcong |
|- ( ( ( G e. Mnd /\ A e. X ) /\ ( M e. NN0 /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( ( O ` A ) || ( M - N ) <-> ( M .x. A ) = ( N .x. A ) ) ) |
6 |
5
|
biimpd |
|- ( ( ( G e. Mnd /\ A e. X ) /\ ( M e. NN0 /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( ( O ` A ) || ( M - N ) -> ( M .x. A ) = ( N .x. A ) ) ) |
7 |
6
|
3expia |
|- ( ( ( G e. Mnd /\ A e. X ) /\ ( M e. NN0 /\ N e. NN0 ) ) -> ( ( O ` A ) e. NN -> ( ( O ` A ) || ( M - N ) -> ( M .x. A ) = ( N .x. A ) ) ) ) |
8 |
7
|
3impa |
|- ( ( G e. Mnd /\ A e. X /\ ( M e. NN0 /\ N e. NN0 ) ) -> ( ( O ` A ) e. NN -> ( ( O ` A ) || ( M - N ) -> ( M .x. A ) = ( N .x. A ) ) ) ) |
9 |
|
nn0z |
|- ( M e. NN0 -> M e. ZZ ) |
10 |
|
nn0z |
|- ( N e. NN0 -> N e. ZZ ) |
11 |
|
zsubcl |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M - N ) e. ZZ ) |
12 |
9 10 11
|
syl2an |
|- ( ( M e. NN0 /\ N e. NN0 ) -> ( M - N ) e. ZZ ) |
13 |
12
|
3ad2ant3 |
|- ( ( G e. Mnd /\ A e. X /\ ( M e. NN0 /\ N e. NN0 ) ) -> ( M - N ) e. ZZ ) |
14 |
|
0dvds |
|- ( ( M - N ) e. ZZ -> ( 0 || ( M - N ) <-> ( M - N ) = 0 ) ) |
15 |
13 14
|
syl |
|- ( ( G e. Mnd /\ A e. X /\ ( M e. NN0 /\ N e. NN0 ) ) -> ( 0 || ( M - N ) <-> ( M - N ) = 0 ) ) |
16 |
|
nn0cn |
|- ( M e. NN0 -> M e. CC ) |
17 |
|
nn0cn |
|- ( N e. NN0 -> N e. CC ) |
18 |
|
subeq0 |
|- ( ( M e. CC /\ N e. CC ) -> ( ( M - N ) = 0 <-> M = N ) ) |
19 |
16 17 18
|
syl2an |
|- ( ( M e. NN0 /\ N e. NN0 ) -> ( ( M - N ) = 0 <-> M = N ) ) |
20 |
19
|
3ad2ant3 |
|- ( ( G e. Mnd /\ A e. X /\ ( M e. NN0 /\ N e. NN0 ) ) -> ( ( M - N ) = 0 <-> M = N ) ) |
21 |
|
oveq1 |
|- ( M = N -> ( M .x. A ) = ( N .x. A ) ) |
22 |
20 21
|
syl6bi |
|- ( ( G e. Mnd /\ A e. X /\ ( M e. NN0 /\ N e. NN0 ) ) -> ( ( M - N ) = 0 -> ( M .x. A ) = ( N .x. A ) ) ) |
23 |
15 22
|
sylbid |
|- ( ( G e. Mnd /\ A e. X /\ ( M e. NN0 /\ N e. NN0 ) ) -> ( 0 || ( M - N ) -> ( M .x. A ) = ( N .x. A ) ) ) |
24 |
|
breq1 |
|- ( ( O ` A ) = 0 -> ( ( O ` A ) || ( M - N ) <-> 0 || ( M - N ) ) ) |
25 |
24
|
imbi1d |
|- ( ( O ` A ) = 0 -> ( ( ( O ` A ) || ( M - N ) -> ( M .x. A ) = ( N .x. A ) ) <-> ( 0 || ( M - N ) -> ( M .x. A ) = ( N .x. A ) ) ) ) |
26 |
23 25
|
syl5ibrcom |
|- ( ( G e. Mnd /\ A e. X /\ ( M e. NN0 /\ N e. NN0 ) ) -> ( ( O ` A ) = 0 -> ( ( O ` A ) || ( M - N ) -> ( M .x. A ) = ( N .x. A ) ) ) ) |
27 |
1 2
|
odcl |
|- ( A e. X -> ( O ` A ) e. NN0 ) |
28 |
27
|
3ad2ant2 |
|- ( ( G e. Mnd /\ A e. X /\ ( M e. NN0 /\ N e. NN0 ) ) -> ( O ` A ) e. NN0 ) |
29 |
|
elnn0 |
|- ( ( O ` A ) e. NN0 <-> ( ( O ` A ) e. NN \/ ( O ` A ) = 0 ) ) |
30 |
28 29
|
sylib |
|- ( ( G e. Mnd /\ A e. X /\ ( M e. NN0 /\ N e. NN0 ) ) -> ( ( O ` A ) e. NN \/ ( O ` A ) = 0 ) ) |
31 |
8 26 30
|
mpjaod |
|- ( ( G e. Mnd /\ A e. X /\ ( M e. NN0 /\ N e. NN0 ) ) -> ( ( O ` A ) || ( M - N ) -> ( M .x. A ) = ( N .x. A ) ) ) |